
Interpolation in PR Space

As the level of Recall varies, the Precision does not necessarily change 
linearly due to the fact that FP replaces FN in the denominator of the 
Precision metric. In these cases, linear interpolation is a mistake that 
yields an overly-optimistic estimate of performance.

Optimizing AUC in PR and ROC

Algorithms which optimize the AUC-ROC do not optimize the 
AUC-PR. We show two overlapping curves in ROC space for a 
domain with 20 positive examples and 2000 negative examples, 
where each curve individually is a convex hull.  The AUC-ROC for 
curve I is 0.813 and the AUC-ROC for curve II is 0.875, so an 
algorithm optimizing the AUC-ROC and choosing between these 
two rankings would choose curve II.  However, the same curves 
translated into PR space, and the difference here is drastic. The AUC-
PR for curve I is now 0.514 due to the high ranking of over half of 
the positive examples, while the AUC-PR for curve II is far less at 
0.038, so the direct opposite choice of curve I should be made to 
optimize the AUC-PR. 
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Abstract

Receiver Operator Characteristic (ROC) curves are commonly used 
to present results for binary decision problems in machine learning. 
However, when dealing with highly skewed datasets, Precision-Recall 
(PR) curves give a more informative picture of an algorithm's 
performance. We show that a deep connection exists between ROC 
space and PR space, such that a curve dominates in ROC space if and 
only if it dominates in PR space. A corollary is the notion of an 
achievable PR curve, which has properties much like the convex hull 
in ROC space; we show an efficient  algorithm for computing this
curve.  Finally, we also note differences in the two types of curves are 
significant for algorithm design. For example, in PR space it is
incorrect to linearly interpolate between points. Furthermore, 
algorithms that optimize the area under the ROC curve are not 
guaranteed to optimize the area under the PR curve.

Dominance Relationship

Our main theorem is as follows: For a fixed number of positive and 
negative examples, one curve dominates a second curve in ROC space if 
and only if the first dominates the second in Precision-Recall space.

Proof by contradiction of ROC to PR (PR to ROC proof is 
isomorphic): Suppose we have curve I and curve II such that curve I 
dominates in ROC space, yet curve I does not dominate in PR space. 
This means there exists some point A on curve II such that the point 
B on curve I with identical Recall has lower Precision.

(1) PRECISION(A) > PRECISION(B) Given
(2) RECALL(A) = RECALL(B) Given
(3) TPR(A) = TPR(B 2 morf)
(4) TPA = TPB = TP from 3
(5) PRECISION(A) = from 4
(6) PRECISION(B) = from 4
(7) FPR(A) ≥ FPR(B) Given
(8) FPA ≥ FPB from 7
(9) PRECISION(A) ≤ PRECISION(B) ? from 5, 6, 8

Contradicts with 1, so curve I must dominate in PR space.

Convex Hull and Achievable Curve

Given a set of points in ROC space, the convex hull must meet the 
following three criteria: linear interpolation is used between adjacent 
points, no point lies above the final curve, and for any pair of points 
used to construct the curve, the line segment connecting them is
equal to or below the curve. In our paper, we prove the following 
theorem: Given a set of points in PR space, there exists an achievable PR
curve that dominates the other valid curves that could be constructed 
with these points. This is based on the dominance proof above.
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What are Precision-Recall and ROC Curves?

Receiver Operator Characteristic (ROC) curves show how the 
number of correctly classified positive examples varies with the
number of incorrectly classified negative examples. However, ROC
curves can present an overly optimistic view of an algorithm's 
performance if there is a large skew in the class distribution. 
Precision-Recall (PR) curves instead use metrics focused on the 
true positive examples.
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