How To Be A Better Babylon Player

Mark Goadrich, Mark Schlatter

Department of Mathematics and Computer Science
Centenary College of Louisiana

December 7, 2009
Introduction
 Overview of Babylon
 Combinatorial Game Theory

Easy Cases
 Notation
 One or Two Red

Odd Sum Cases

Conclusions and Open Questions
Rules of the Game

▶ 12 tokens, 3 in each of 4 colors.
Rules of the Game

- 12 tokens, 3 in each of 4 colors.
- Two players take turns combining piles of tokens.
Rules of the Game

- 12 tokens, 3 in each of 4 colors.
- Two players take turns combining piles of tokens
- Piles can be combined if they have the same color token on top or the same height.
Rules of the Game

- 12 tokens, 3 in each of 4 colors.
- Two players take turns combining piles of tokens.
- Piles can be combined if they have the same color token on top or the same height.
- A player wins if they are the last player to combine a pile.
Sample Game

On-line implementation of Babylon
Game Tree Analysis

- Who will win Babylon?
Game Tree Analysis

- Who will win Babylon?
- Create game tree computationally
Game Tree Analysis

- Who will win Babylon?
- Create game tree computationally
- Explore 600+ game states
- Second player if played perfectly
What is a Combinatorial Game?

- Finite.
What is a Combinatorial Game?

- Finite.
- Two players.
What is a Combinatorial Game?

- Finite.
- Two players.
- No element of chance.
What is a Combinatorial Game?

- Finite.
- Two players.
- No element of chance.
- All moves known to all players.
- Babylon is impartial — all move available to all players
N and P

- Babylon is impartial — all move available to all players
- Sprague-Grundy Theorem: Any impartial combinatorial game is either \(N \) (next player wins) or \(P \) (previous player wins).
N and P

- Babylon is impartial — all move available to all players
- Sprague-Grundy Theorem: Any impartial combinatorial game is either N (*next* player wins) or P (*previous* player wins).
- Example of N: one red and one blue
Babylon is impartial — all move available to all players

Sprague-Grundy Theorem: Any impartial combinatorial game is either \(N \) (next player wins) or \(P \) (previous player wins).

Example of \(N \): one red and one blue

Example of \(P \): three blues
(\# \text{ of colors}, \# \text{ of tokens}, \{\text{arrangement of piles}\})
Mathematical Notation - Games

- (# of colors, # of tokens, {arrangement of piles})
- The game as designed: (4, 12, {3, 3, 3, 3})
Mathematical Notation - Games

- (\# of colors, \# of tokens, \{arrangement of piles\})
- The game as designed: \((4, 12, \{3, 3, 3, 3\})\)
- Our focus: \((2, m, \{p, q\})\) where \(p + q = m\)
Mathematical Notation - Games

- (# of colors, # of tokens, {arrangement of piles})
- The game as designed: (4, 12, {3, 3, 3, 3})
- Our focus: (2, \(m\), \(\{p, q\}\)) where \(p + q = m\)
- Convention: red tokens least common, blue tokens most common
How Many Moves?

- How long can \((2, 5, \{2, 3\})\) last?
How Many Moves?

- How long can \((2, 5, \{2, 3\})\) last?
- Game ends with either one or two piles
How Many Moves?

- How long can \((2, 5, \{2, 3\})\) last?
- Game ends with either one or two piles
- Game lasts either 3 or 4 turns
How Many Moves?

- How long can \((2, 5, \{2, 3\})\) last?
- Game ends with either one or two piles
- Game lasts either 3 or 4 turns
- If I move first, I want the game to last how long?
One Red Token With Even Number of Tokens

▶ (2, 2m, \{1, 2m − 1\})
One Red Token With Even Number of Tokens

- $(2, 2m, \{1, 2m - 1\})$
- If I start, how many moves do I want?
One Red Token With Even Number of Tokens

- $(2, 2m, \{1, 2m - 1\})$
- If I start, how many moves do I want?
- How many piles do I want?
One Red Token With Even Number of Tokens

- \((2, 2m, \{1, 2m - 1\})\)
- If I start, how many moves do I want?
- How many piles do I want?
- Winning move: cover the red token
Two Red Tokens With Even Number of Tokens

- $(2, 2m, \{2, 2m - 2\})$
Two Red Tokens With Even Number of Tokens

- \((2, 2m, \{2, 2m - 2\})\)
- If I start, how many piles do I want?
Two Red Tokens With Even Number of Tokens

- \((2, 2m, \{2, 2m - 2\})\)
- If I start, how many piles do I want?
- If \(2m = 4\), cover a red with a red
Two Red Tokens With Even Number of Tokens

- $(2, 2m, \{2, 2m - 2\})$
- If I start, how many piles do I want?
- If $2m = 4$, cover a red with a red
- If $2m > 4$, cover a red with a blue
Two Red Tokens With Even Number of Tokens

- $(2, 2m, \{2, 2m - 2\})$
- If I start, how many piles do I want?
- If $2m = 4$, cover a red with a red
- If $2m > 4$, cover a red with a blue
 - If opponent created a pile of size two with red on top, cover it
Two Red Tokens With Even Number of Tokens

- $(2, 2m, \{2, 2m - 2\})$
- If I start, how many piles do I want?
- If $2m = 4$, cover a red with a red
- If $2m > 4$, cover a red with a blue
 - If opponent created a pile of size two with red on top, cover it
 - If not, cover the last red token
Table of Possible Games

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Blue</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>3</td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>5</td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>6</td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>7</td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>8</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>

Empirical investigation with Java programming

Distributed computing through Condor
Mathematical Notation - States

- Representation for current game state
Mathematical Notation - States

- Representation for current game state
- (individual blue pile heights : individual red pile heights)
Mathematical Notation - States

- Representation for current game state
- $(\text{individual blue pile heights} : \text{individual red pile heights})$
- Starting position $(1, 1, 1, 1 : 1, 1, 1)$
Mathematical Notation - States

- Representation for current game state
- (individual blue pile heights : individual red pile heights)
- Starting position (1, 1, 1, 1 : 1, 1, 1)
- Midgame position (3, 2 : 1, 1)
Game Tree for \((2, 7, \{3, 4\})\)
Game Tree for \((2, 7, \{3, 4\})\)

<table>
<thead>
<tr>
<th>Node</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1</td>
<td>1,1,1,1</td>
</tr>
<tr>
<td>2,1</td>
<td>1,1,1</td>
</tr>
<tr>
<td>2,2</td>
<td>2,1</td>
</tr>
<tr>
<td>2,2,1</td>
<td>2,1</td>
</tr>
<tr>
<td>3,1</td>
<td>3,1</td>
</tr>
<tr>
<td>3,1,1</td>
<td>3,1,1</td>
</tr>
<tr>
<td>3,2</td>
<td>3,2</td>
</tr>
<tr>
<td>3,2,1</td>
<td>3,2,1</td>
</tr>
<tr>
<td>3,3</td>
<td>3,3</td>
</tr>
<tr>
<td>4,1</td>
<td>4,1</td>
</tr>
<tr>
<td>4,1,1</td>
<td>4,1,1</td>
</tr>
<tr>
<td>4,1,1,1</td>
<td>4,1,1,1</td>
</tr>
<tr>
<td>4,2</td>
<td>4,2</td>
</tr>
<tr>
<td>4,2,1</td>
<td>4,2,1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5,1</td>
<td>5,1</td>
</tr>
<tr>
<td>5,1,1</td>
<td>5,1,1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>6,1</td>
<td>6,1</td>
</tr>
<tr>
<td>6,1,1</td>
<td>6,1,1</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>
Game Tree for \((2, 7, \{3, 4\})\)
Game Tree for \((2, 7, \{3, 4\})\)
Game Tree for \((2, 7, \{3, 4\})\)
Red + Blue = Odd

- $(2, 2m + 1, \{p, q\})$ where $p + q = 2m + 1$ and $p < q$
Red + Blue = Odd

- $(2, 2m + 1, \{p, q\})$ where $p + q = 2m + 1$ and $p < q$
- Assume we are the starting player.
Red + Blue = Odd

- $(2, 2m + 1, \{p, q\})$ where $p + q = 2m + 1$ and $p < q$
- Assume we are the starting player.
- How many moves do we want?
Red + Blue = Odd

- \((2, 2m + 1, \{p, q\})\) where \(p + q = 2m + 1\) and \(p < q\)
- Assume we are the starting player.
- How many moves do we want?
- We want two piles with different colors on top.
Some Important Definitions

- **Single minority pile (or SMP)**
 - only one pile of one color
 - all other piles have a height different from the above pile
Some Important Definitions

- **Single minority pile** (or SMP)
 - only one pile of one color
 - all other piles have a height different from the above pile

- **Preferred pile determined** (or PPD)
 - One pile of height 4 or greater
 - All other piles have height 1
 - The color of the minority of piles of height 1 matches the color of the pile of height 4
Some Important Definitions

- **Single minority pile** (or SMP)
 - only one pile of one color
 - all other piles have a height different from the above pile

- **Preferred pile determined** (or PPD)
 - One pile of height 4 or greater
 - All other piles have height 1
 - The color of the minority of piles of height 1 matches the color of the pile of height 4

- Our strategy: four-stage process
Stage 1

Place a red token on a blue token
Stage 2

- Convert a pile of height 2 to a pile of height 4
Stage 2

- Convert a pile of height 2 to a pile of height 4
- Determine the minority color
Stage 2

- Convert a pile of height 2 to a pile of height 4
- Determine the minority color
- We are now PPD!
Stage 3: PPD

- Place largest minority pile on preferred pile
Stage 3: PPD

- Place largest minority pile on preferred pile
- If single minority pile, then move to Stage 4
Stage 3: PPD

- Place largest minority pile on preferred pile
- If single minority pile, then move to Stage 4
- Otherwise, stay in Stage 3
Stage 4: SMP

Make any move that leaves the game in an SMP position
Why does such a move exist?

- Assumption: one minority pile, even number of majority piles
Why does such a move exist?

- Assumption: one minority pile, even number of majority piles
- Concern: our only move creates a pile equal in size to the minority pile
Why does such a move exist?

- Assumption: one minority pile, even number of majority piles
- Concern: our only move creates a pile equal in size to the minority pile
- If majority piles have different sizes, a move exists
Why does such a move exist?

- Assumption: one minority pile, even number of majority piles
- Concern: our only move creates a pile equal in size to the minority pile
- If majority piles have different sizes, a move exists
- If all majority piles have the same size...
Why does such a move exist?

- Assumption: one minority pile, even number of majority piles
- Concern: our only move creates a pile equal in size to the minority pile
- If majority piles have different sizes, a move exists
- If all majority piles have the same size...
- ... then we have an even number of tokens →←
Conclusions

We have a known strategy and proof for:

- even number of tokens, one red - N
Conclusions

We have a known strategy and proof for:

- even number of tokens, one red - N
- even number of tokens, two red - N
Conclusions

We have a known strategy and proof for:

- even number of tokens, one red - N
- even number of tokens, two red - N
- odd number of tokens - N
Game Tree for $(2, 12, \{p, q\})$
Open Questions

- In general, is the two-color game with an even number of tokens P?
Open Questions

- In general, is the two-color game with an even number of tokens \(P \)?
- If so, what is the strategy?
Open Questions

- In general, is the two-color game with an even number of tokens P?
- If so, what is the strategy?
- What about more colors?