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Abstract

Receiver Operator Characteristic (ROC)
curves and Precision-Recall (PR) curves are
commonly used to present results for binary
decision problems in machine learning. When
the class distribution is close to being uni-
form, ROC curves have many desirable prop-
erties. However, when dealing with a highly
skewed dataset, PR curves give a more accu-
rate picture of an algorithm’s performance.
We show that a deep connection exists be-
tween ROC space and PR space. We prove
that a curve dominates in ROC space if and
only if it dominates in PR space. An impor-
tant corollary to this proof is the notion of
an achievable PR curve, and we show an effi-
cient algorithm for computing the achievable
PR curve. While it cannot be called a convex
hull, this curve has properties much like the
convex hull in ROC space. Finally, we show
that differences in the two types of curves
are significant for algorithm design. For ex-
ample, in PR space it is incorrect to linearly
interpolate between point. Furthermore, an
algorithm which optimizes the area under the
ROC curve is not guaranteed to optimize the
area under the PR curve.

1. Introduction

In machine learning, current research has shifted away
from simply presenting accuracy results when perform-
ing an empirical validation of new algorithms. This is
especially true when evaluating algorithms that output
probabilities of class values. Provost et al. have argued
that simply using accuracy results can be misleading,
as one can often use thresholds on the output of an al-
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gorithm to alter its performance (Provost et al., 1998).
They recommended using Receiver Operator Charac-
teristic (ROC) curves when evaluating binary decision
problems; however, ROC curves can present an overly
optimistic view of an algorithm’s performance if there
is a large skew in the class distribution. Drummond
and Holte (Drummond & Holte, 2000; Drummond &
Holte, 2004) have recommended using cost curves to
address this issue, yet it is difficult to always quantify
the misclassification cost for a given task.

Precision-Recall (PR) curves, often used in Informa-
tion Retrieval (Manning & Schutze, 1999; Raghavan
et al., 1989), have been cited as an alternative to ROC
curves for tasks with a large skew in the class dis-
tribution (Bockhorst & Craven, 2005; Davis et al.,
2005; Goadrich et al., 2004; Kok & Domingos, 2005;
Singla & Domingos, 2005). An important difference
between ROC space and PR space is the visual rep-
resentation of the curves. For a sample ROC curve
see Figure 1(a) and for a sample PR curve see Fig-
ure 1(b). These curves, taken from the same learned
model on a highly-skewed biomedical information ex-
traction dataset, highlight the visual difference be-
tween these spaces (Goadrich et al., 2004). The goal
in ROC space is to be in the upper-left-hand corner,
and when one looks at the ROC curve in Figure 1(a) it
appears to be fairly close to optimal. In PR space the
goal is to be in the upper-right-hand corner, and the
PR curve in Figurel(b) shows that there is still signifi-
cant room for improvement. Section 2 defines precision
and recall for the reader unfamiliar with these terms.

Furthermore, looking at PR curves can accentuate dif-
ferences between algorithms that are not apparent in
ROC space. For example, let us consider a cancer de-
tection task. Mammography is the only the proven
method for early detection of Breast Cancer. Fig-
ure 2(a) shows the ROC curves for two different al-
gorithms that look at a radiologist’s interpretation of
a mammogram and predict whether an abnormality is
benign or malignant. The performances of the algo-
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Figure 1. The same curve shown in both ROC and PR space

rithms appear to be comparable in ROC space. How-
ever, Figure 2(b) shows the same curves in PR space.
In PR space we can see that Algorithm 2 has a clear
advantage over Algorithm 1 (Davis et al., 2005). This
difference exists because in this domain the number
of negative examples greatly exceeds the number pos-
itives instances. Consequently, a large change in the
number of false positives can lead to a small change
in the false positive rate used in ROC analysis. Preci-
sion, on the other hand, by comparing false positives
to true positives rather than true negatives, captures
the effect of the large number of negative examples has
on the algorithms performance.

Finally, when comparing two curves it is important to
note the curve with the best area under the curve in
ROC space is not guaranteed to have the best area
under the curve in PR space. Figure 3(a) shows ROC
curves for two classifiers on a dataset. Figure 3(b)
show PR curves for same two classifiers on the same
dataset. In Figure 3(a), curve IT has a larger area than
curve 1. However, in PR space (Figure 3(b)), curve I
has a substantially larger area than curve II. This will
be discussed in greater detail later.

We show that for any dataset, and hence a fixed num-
ber of positive and negative examples, the ROC curve
and PR curve for a given algorithm contain the “same
points.” Hence PR curve I and PR curve II in Fig-
ure 3(b) are, in a sense that we formally define, equiv-
alent to the ROC curve I and ROC curve II, respec-
tively in Figure 3(a). Based on this equivalence for
ROC and PR curves, we show that a curve dominates
in ROC space if and only if it dominates in PR space.
Second, we introduce the PR space analog to the con-
vex hull in ROC space. We refer to the analog as the

achievable PR curve. We show that due to the equiv-
alence of these two spaces we can efficiently compute
the achievable PR curve. Third we demonstrate that
in PR space it is insufficient to linearly interpolate be-
tween points. Finally, we show that an algorithm that
optimizes the area under the ROC curve is not guar-
anteed to optimize the area under the PR curve.

2. Review of ROC and Precision-Recall

In a binary decision problem, a classifier labels ex-
amples as either positive or negative. The decision
made by the classifier can be represented in a struc-
ture known as a confusion matrix or contingency ta-
ble. The confusion matrix has four categories: True
positives (TP) are examples correctly labeled as posi-
tives. False positives (FP) refer to negative examples
incorrectly labeled as positive. True negatives (TN)
correspond to negatives correctly labeled as negative.
Finally, false negatives (FN) refer to positive examples
incorrectly labeled as negative.

A confusion matrix is shown in Figure 4(a). The con-
fusion matrix can be used to construct a point in either
ROC space or PR space. Given the confusion matrix,
we are able to define the metrics used in each space as
in Figure 4(b). In ROC space, one plots the False Pos-
itive Rate (F'PR) on the z-axis and the True Positive
Rate (T'PR) on the y-axis. The FPR measures the
fraction of negative examples that are misclassified as
positive. The TPR measures the fraction of positive
examples that are correctly labeled. In PR space, one
plots Recall on the xz-axis and Precision on the y-axis.
Recall is the same as T'P R, whereas precision measures
that fraction of examples classified as positive that are
truly positive. Figure 4(b) gives the definitions for
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Figure 2. The difference between comparing algorithms in ROC vs PR space
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(b) Comparison in PR space

Figure 3. Difference in optimizing area under the curve in each space

each metric. We will treat the metrics as functions
that act on the underlying confusion matrix that de-
fines a point in either ROC space or PR space. Thus,
given a confusion matrix A, RECALL(A) returns the
recall associated with A.

3. Relationship between ROC Space
and PR Space

Despite the differences between ROC space and PR
space previously discussed, there still exists a relation-
ship between the two spaces.

Theorem 3.1. For a fized number of positive and
negative examples, there exists a one-to-one correspon-
dence between a curve in ROC space and a curve in PR
space, such that the curves contain exactly the same
confusion matrices.

Proof. Note that a confusion matrix defines a unique
point in ROC space. Since we ignore F'N in PR space,
one might worry that each point may correspond to
multiple confusion matrices. However, with a fixed
number of positive and negative examples, given the
other three entries in a matrix, F'N is uniquely deter-
mined. Consequently, we have a one-to-one mapping
between confusion matrices and points in PR space.
This implies that we also have a one-to-one mapping
between points (each defined by a confusion matrix)
in ROC space and PR space; hence, we can translate a
curve in ROC space to PR space and vice-versa. [

One important definition we need for our next theorem
is the notion that one curve dominates another curve.
We use Provost et al.’s definition and say that curve
I dominates curve II if curve II is always equal to or
below curve I (Provost et al., 1998).
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Figure 4. Common machine learning evaluation metrics

Theorem 3.2. For a fized number of positive and neg-
ative examples, one curve dominates a second curve in
ROC space if and only if the first dominates the second
in Precision-Recall space.

Proof.

Claim 1 (=): If a curve dominates in ROC
space then it dominates in PR space. Proof
by contradiction. Suppose we have curve I and
curve II, such that curve I dominates in ROC space,
yet, once we translate these curves in PR space,
curve I no longer dominates. Since curve I does
not dominate in PR space, there exists some point
A on curve II such that the point B on curve I

with identical recall has lower precision. In other
words, PRECISION(A) > PRECISION(B)
yet RECALL(A) = RECALL(B). Since

RECALL(A) = RECALL(B) and Recall is iden-
tical to TPR, we have that TPR(A) = TPR(B).
Since curve I dominates in curve II in ROC space
FPR(A) > FPR(B). Remember that total pos-
itives and total negatives are fixed and since
TPR(A) = TPR(B):

TPy
TPR(A) = ——————
R(4) Total Positives
TP
TPR(B) &

- Total Positives

We now have TP4 = T Pg and thus denote both as
TP. Since FPR(A) > FPR(B) and

FPy
FPRA) = —————————
R(4) Total Negatives
FPR(B) FPp

~ Total Negatives

This implies that FB4 < FPp and now we see that

TP
PRECISION(A) = —————
RECISION(4) FPy,+TP
TP
We now have that PRECISION(A) <
PRECISION(B). But this contradicts our
original assumption that PRECISION(A) >
PRECISION(B).

Claim 2 («<): If a curve dominates in PR space
then it dominates in ROC space. Proof by con-
tradiction. Suppose we have curve I and curve II such
that in that curve I in PR space, but once translated
in ROC space curve I no longer dominates. Since
curve I does not dominate in ROC space, there ex-
ists some point A on curve IT such that the point B on
curve I with identical TPR yet FPR(A) < TPR(B).
Since RECALL and TPR are the same, we get that
RECALL(A) = RECALL(B). Because curve I dom-
inates in PR space we know that PRECISTION(A) <
PRECISION(B), as illustrated in Figure 6(a). Since
RECALL(A) = RECALL(B) and

B TPy
RECALL(A) = Total Positives
RECALL(B) I'Ps

- Total Positives

We know that TPy = T Pg, so we will now denote
them simply as TP. Because PRECISION(A) <
PRECISION(B) and

TP
TP



The Relationship Between Precision-Recall and ROC Curves

© 0.8 |
&
2 o06f |
a
g 0.4t |
(]
]
F 0.2t |
/ Curve | ——
0 . _CQurve Il -

0 0.2 0.4 0.6 0.8 1
Fal se Positive Rate

(a) Case 1: FPR(A) > FPR(B)

True Positive Rate

Curve | ——
0 ‘ ‘ OJrvg 1] emeees

0 0.2 0.4 0.6 0.8 1
Fal se Positive Rate

(b) Case 2: FPR(A) = FPR(B)

Figure 5. Two cases for Claim 1 of Theorem 3.2
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Figure 6. Two cases of Claim 2 of Theorem 3.2

We get that FP4 > FPg. Now we get that

FPy
FPRA) = ——————————
R(4) Total Negatives
FPR(B) FPp

~ Total Negatives

This implies that FPR(A) > FPR(B) and this con-
tradicts our original assumption that FPR(A) <
FPR(B). O

An interesting question to ask is if the convex hull
in ROC space has an analog in PR space. The issue
of dominance in ROC space is directly related to the
convex hull. Given a set of points in ROC space, the
convex hull must meet the following three criteria:

1. Linear interpolation is used between adjacent
points.

2. No point lies above the final curve.

3. For any pair of points used to construct the curve,
the line segment connecting them is equal to or
below the curve.

Figure 7 shows several incorrect examples of construct-
ing a convex hull. Figure 7(a) violates condition 2,
whereas Figure 7(b) violates condition 3. For a de-
tailed algorithm of how to efficiently construct the con-
vex hull, see Cormen et al. (Cormen et al., 1990).

Corollary 3.1. Given a set of points in PR space,
there exists an analogous curve to the convex hull in
ROC space, which we call the achievable PR curve.

Proof. Figure 8(a) shows an example of a convex hull
in ROC space. By definition, the convex hull domi-
nates all other curves that could be constructed with
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Figure 8. Convex hull and its PR analog dominate the naive method for curve construction in each space

those points when using linear interpolation between
the points. Thus converting the points of the ROC
convex hull into PR space will yield a curve that dom-
inates in PR space as shown in Figure 8. This follows
from Theorem 3.2. Interestingly the achievable PR
curve will exclude exactly those points beneath the
convex hull in ROC space. [

An important methodological issue must be addressed
when building a convex hull in ROC space or an
achievable curve in PR space. When constructing a
ROC curve (or PR curve) from an algorithm that out-
puts a probability, the following approach is usually
taken: first find the probability that each test set ex-
ample is positive, next sort this list and then traverse
the sorted list in descending order. To simplify the
discussion, we will refer let class(i) refer to the true
classification of the example at position 4 in the ar-

ray and prob(i) refer to the probability that the ex-
ample at position ¢ is positive. For each ¢ such that
class(i) # class(i + i) and prob(i) < prob(i + i), cre-
ate a classifier by calling every example j such that
j > 1+ 1 positive and all other examples negative.

Thus each point in ROC space or PR space represents
a specific classifier, with a threshold for a calling an
example positive. Building the convex hull can be
seen as constructing a new classifier, as one picks the
best points. Therefore it would be methodologically
incorrect to construct a convex hull or achievable PR
curve by looking at performance on the test data and
then constructing a convex hull. To combat this prob-
lem, the convex hull must be constructed using a tun-
ing a set as follows: First, use the method described
above to find a candidate set of thresholds on the tun-
ing data. Then, build a convex hull over the tuning
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Figure 9. How to Calculate Area Under ROC Curve

data. Finally use the thresholds selected on the tuning
data, when building an ROC or PR curve for the test
data. While this test-data curve is not guaranteed to
be a convex hull, it preserves the split between training
data and testing data.

4. Interpolation and AUC

A key issue to address is how to interpolate between
points in each space. It is straightforward to interpo-
late between points in ROC space by simply drawing
a straight line connecting the two points. One can
achieve any level of performance on this line by flip-
ping a weighted coin to decide between the classifiers
that the two end points represent. Often, the area un-
der the curve is used as a simple metric to define how
an algorithm performs over the whole space (Bradley,
1997; Davis et al., 2005; Goadrich et al., 2004; Kok &
Domingos, 2005; Macskassy & Provost, 2005; Singla
& Domingos, 2005). The area under the curve (AUC-
ROC) can be calculated by using the polygonal areas
created between each ROC point. For an example of
how to create the polygons, see Figure 9.

However, in Precision-Recall space, interpolation is
more complicated. As the level of recall varies, the
precision does not necessarily change linearly due to
a factor in the denominator of the precision metric.
In these cases, linear interpolation is a mistake that
yields an overly-optimistic estimate of performance.
Goadrich et al. proposed the following method to ap-
proximate the interpolation between two points in PR
space (Goadrich et al., 2004).

To construct the curve, we first standardize our

precision-recall curves to always cover the full range
of recall values and then interpolate between the
points. From the first point, which we designate
(Ryirst, Prirst), the curve is extended horizontally to
the point (0, Pfirs¢). This new point is achievable since
we could randomly discard a fraction, f, of the ex-
tracted relations and expect the same precision but
smaller recall on the remaining examples; the setting
of f would determine the recall. An ending point of
(1, romrpaa i Neg) can always be found by classi-
fying everything as positive. This will give us a con-
tinuous curve extending from 0 to 1 along the recall
dimension.

First, remember that any point A on a precision-recall
curve is generated from the underlying true positive
(T'P4) and false positive (F'P4) counts. Suppose we
have two points, A and B which are far apart in
precision-recall space. To find some intermediate val-
ues for our curve, we must interpolate between their
counts T P4 and T Pg, and FFP4 and FPg. First, we
find out how many negative examples it takes to equal
one positive, or the local skew, defined by %.
Now we can create new points with recall T'P4 + x for
all integer values of x such that 0 < x < B — A, i.e.
TPa+1,TPa+2,..,TPp—1, and calculate precision
by linearly increasing the false positives for each new
point by the local skew. Our resulting precision-recall
points will be

<TPA+z TPa+ 2 )

Total Pos’ TPy + x + FPa + 1;%:55230

With these new points, we can now use the polygon
method previously discussed to calculate the area un-
der the curve (AUC-PR).

For example, suppose we have a dataset with 20 posi-
tive examples and 2000 negative examples. Let T P4 =
5 FPy=5,TPg =10, and FFPg = 30. Table 1 shows
the proper interpolation of the intermediate points be-
tween A and B, with the local skew of 5 negatives for
every 1 positive. Notice how the resulting precision
interpolation is not linear between 0.50 and 0.25.

The graphical interpolation for the precision-recall
curve is different than for an ROC curve; whereas
the ROC interpolation would be a linear connection
between the two points, in precision-recall space the
connection can be curved, depending on the actual
number of positive and negative examples covered by
each point. The curve is especially pronounced when
two points are far away in recall and precision and the
local skew is high. Consider a curve (Figure 10) con-
structed from a single point of (0.02,1), and extended
to the endpoints of (0,1) and (1,0.008) as described
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Table 1. Correct interpolation between two points in PR
space for a dataset with 20 positive and 2000 negative ex-
amples
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Figure 10. The effect of incorrect interpolation in PR space

above (for this example, our dataset contains 433 pos-
itives and 56,164 negatives). Interpolating as we have
described would have an AUC-PR of 0.031; a linear
connection would severely overestimate with an AUC-
PR of 0.50.

In order to find the achievable curve in precision-recall
space we merely have to find the convex hull in ROC
space. Next, for each point selected by the algorithm
to be included in the hull, we use the confusion matrix
that defines that point to construct the corresponding
point in PR space. Finally, we will have to perform
the correct interpolation between the newly created
PR points.

5. Optimizing Area Under the Curve.

Since the introduction of AUC-ROC as an evalua-
tion metric, several researchers have investigated us-
ing AUC-ROC to inform the search heuristics of their

algorithms. Ferri et al. (Ferri et al., 2002) alter de-
cision trees to use the AUC-ROC as their splitting
criterion, Cortes and Mohri (Cortes & Mohri, 2003)
show that the boosting algorithm RankBoost (Freund
et al., 1998), is also well-suited to optimize the AUC-
ROC, Joachims (Joachims, 2005) presents a general-
ization of Support Vector Machines which can opti-
mize AUC-ROC among other ranking metrics, Prati
and Flach (Prati & Flach, 2005) use a rule selection
algorithm to directly create the convex hull in ROC
space, and both Yan et al. (Yan et al., 2003) and Her-
schtal and Raskutti (Herschtal & Raskutti, 2004) ex-
plore ways to optimize the AUC-ROC within neural
networks. Also, ILP algorithms such as Aleph (Srini-
vasan, 2003) can be changed to use heuristics related
to ROC or PR space, at least in relation to an indi-
vidual rule.

Knowing that a convex hull in ROC space can be
translated into the achievable curve in precision-recall
space leads to another open question: do algorithms
which optimize the AUC-ROC also optimize the AUC-
PR? Unfortunately, the answer generally is no, and we
prove this by the following counter-example. Figure 11
shows two overlapping curves in ROC space for a do-
main with 20 positive examples and 2000 negative ex-
amples, where each curve individually is a convex hull.
The AUC-ROC for curve I is 0.813 and the AUC-ROC
for curve II is 0.875, so an algorithm optimizing the
AUC-ROC and choosing between these two rankings
would choose curve II. However, Figure 12 shows the
same curves translated into PR space, and the differ-
ence here is drastic. The AUC-PR for curve 1 is now
0.514 due to the high ranking of over half of the pos-
itive examples, while the AUC-PR for curve II is far
less at 0.038, so the direct opposite choice of curve I
should be made to optimize the AUC-PR.

In ROC space, the primary contribution to the area
under the curve comes from the region with higher
false positive rates and higher true positive rates.
However, in PR space the main contribution comes
from achieving a lower recall range with higher pre-
cision. Unfortunately, precision at low levels of re-
call can have a higher variance than high recall levels
because of the variation in the denominator of preci-
sion. Nevertheless, based on Theorem 3.2 ROC curves
are useful in an algorithm that optimizes AUC-PR.
An algorithm can find the convex hull in ROC space,
convert that curve to PR space for an achievable PR
curve, and score the classifier by the area under this
achievable PR curve.
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6. Conclusions

This work makes four important contributions. First,
for any dataset, the ROC curve and PR curve for a
given algorithm contain the same points. This equiv-
alence, leads to the surprising theorem that a curve
dominates in ROC space if and only if it dominates in
PR space. Second, as a corollary to the theorem we
show the existence of the PR space analog to the con-
vex hull in ROC space, which we call achievable PR
curve. Remarkably, when constructing the achievable
PR curve one discards exactly the same points omit-
ted by the convex hull in ROC space. Consequently,
we can efficiently compute the achievable PR curve.
Third, we show that simple linear interpolation is in-
sufficient between points in PR space. Finally, we show
that an algorithm that optimizes the area under the
ROC curve is not guaranteed to optimize the area un-
der the PR curve.
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