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Improving Solvability for Procedurally
Generated Challenges in Physical Solitaire

Games Through Entangled Components
Mark Goadrich and James Droscha

Abstract—Challenges for physical solitaire puzzle games are
typically designed in advance by humans and limited in number.
Alternatively, some games incorporate rules for stochastic setup,
where the human solver randomly sets up the game board before
solving the challenge. These setup rules greatly increase the
number of possible challenges, but can often generate unsolvable
or uninteresting challenges. To better understand the compro-
mises involved in minimizing undesirable challenges, we examine
three games where component design choices can influence the
stochastic nature of the resulting challenge generation algorithms.
We evaluate the effect of these components and algorithms
on challenge solvability and challenge engagement. We find
that algorithms which control randomness through entangling
components based on sub-elements of the puzzle mechanics can
generate interesting challenges with a high probability of being
solvable.

Index Terms—Board Games, Procedural Content, Monte Carlo
Methods, Game Design

I. INTRODUCTION

PROCEDURAL content generation (PCG) algorithms are
increasingly being used to derive new content for a wide

variety of games [1]. Using the PCG taxonomy described
by Togelius et al. [2], PCG can occur offline (beforehand)
or online (dynamically during the game), the content can be
constructed by a system of rules, or use a generate-and-test
process to winnow potential candidates for inclusion in the
game, and the algorithm can be deterministic and fixed or
stochastic, incorporating randomness.

Following the puzzle terminology of Browne [3], such that
there is a setter who creates challenges and a solver who solves
them, we can apply the above PCG terminology to puzzle
design. Setters typically construct their challenges using cre-
ative yet deterministic means. Researchers have explored using
PCG to replace the setter, employing metaheuristics to find in-
teresting challenges for deductive logic puzzles, ranging from
Sudoku [4] to Nonograms [5]. These algorithms construct their
challenges offline or online, and guarantee they are solvable,
but substitute stochastic algorithms for the creative human
process. Khalifa and Fayek [6] investigated a combination
of construction and generate-and-test PCG for Sokoban and
related games within a genetic algorithm framework, and this
approach was extended to Monte Carlo Tree Search by Kartal
et al. [7].
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A less-explored variety of puzzle with relation to PCG are
physical solitaire games, for example sliding block puzzles [8]
(including Rush Hour1), and Hi-Q (generalized peg solitaire)
[9]. In these games, solvers must manipulate physical pieces
to solve a challenge. Since the initial setup for these games
must be executed by the solver, providing the solver with
predefined challenges created offline and a solution book is
common practice. PCG can also be applied to these games by,
again, constructing challenges offline and guaranteeing they
are solvable, as seen in recent work by Fogleman [10] and
Köpp [11].

There are, however, alternative PCG approaches available
for physical solitaire games, most popularly demonstrated by
the card game Klondike Solitaire [12]. In particular, this game
uses an online, stochastic, generate-and-test PCG algorithm,
which is as simple as shuffling the deck of cards at the start of
the game. Also of note, the test portion of the generate-and-test
algorithm is left to the solver as they play through the game.
Wolter [13] developed the Politaire system, and examines the
effect of various shuffling algorithms across multiple solitaire
card game variations. One variant called Thoughtful Solitaire,
played such that all card locations are known to the solver at
the beginning of the game, has been separately found to have
between 82% and 91.44% of generated challenges solvable
[14].

While some claim that solitaire games with potentially
unwinnable challenges are “a rather sad form of amusing
oneself,” [15] others find a “catharsis [in] patience” even
without perfect solvability [12]. Thus, to address either side,
when designing such a random setup process to assemble a
challenge, two questions naturally arise for the designer:What
percentage of such challenges can be solved? Are the created
challenges interesting? [16] Also, since these puzzle chal-
lenges are instantiated by the solver, they are restricted to
using only the components included in the puzzle. However,
as much of PCG research involves digital games and puzzles,
where algorithms are only limited by computational time and
space constraints, there is little research into the relationship
between the structural design of physical puzzle components
and PCG.

To understand this component/algorithm relationship, we
examine three different styles of physical solitaire games
with perfect information that incorporate online, stochastic,
generate-and-test PCG algorithms for challenge setup: BoxOff

1https://www.thinkfun.com/products/rush-hour/
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Fig. 1. A sample 6×8 BoxOff challenge with three colors.

[17] , a token removal puzzle, Pretzel [15] , a card arrangement
puzzle, and Fujisan2, a transportation puzzle.

Each of these puzzles includes a basic algorithm where
simple components (tokens or cards) are randomly shuffled
to create a challenge. We define these components to become
entangled if their arrangement is no longer independent, either
due to algorithmic constraints, or having been subsumed by
new, larger components. We provide detailed descriptions of
entangled game components and challenge setup algorithms
for each game, then compare and contrast these using compu-
tational Monte Carlo simulations. Finally, we evaluate these
algorithms with respect to solvability and interest. We find
that entanglements that incorporate desirable constraints based
on each puzzle’s mechanics are more successful across both
metrics.

II. BOXOFF

BoxOff is a 2D token removal puzzle designed by Stephen
Myers [17]. Challenges for this puzzle consist of a 6×8 grid of
squares filled with exactly 16 each of three colors, an example
of which is shown in Figure 1. The challenge is solved when
every square in the grid has been eliminated. The solver can
eliminate two squares of the same color at a time if either of
the following two rules apply.

1) The two squares are adjacent.
2) All other squares inside the box that circumscribes the

two squares have previously been eliminated.3

Figure 2 shows an in-progress BoxOff challenge. The solver
has a few options available, two of which are highlighted in
dashed boxes. They could eliminate the two yellow squares
in the upper-left quadrant using Rule 1, or eliminate the two
blue squares in the middle using Rule 2. An invalid move is
also shown in the upper right quadrant, where Rule 2 would
not apply because of the blue square in the circumscribed box
around the two red squares.

Browne and Maire previously investigated altering the game
design parameters for BoxOff using Monte Carlo simulation
[16]. They explored multiple grid sizes and numbers of colors,

2http://www.ludism.org/ppwiki/Fuji-san
3Rule 1 is actually subsumed by this rule, however, we find it helpful to

separate them into two cases to facilitate our component design discussions.

Fig. 2. Application of Rules 1 and 2 to an in-progress BoxOff challenge, and
an illustrative invalid move.

(h,w, c), where h×w is the size of the grid, and c is the num-
ber of colors, ultimately finding that challenges generated for
the original (6, 8, 3) puzzle configuration described by Myers
were highly solvable and robust against random solvers. Other
configurations, either of smaller board sizes, or more colors,
exhibited poor solvability. In particular, we will examine the
(4, 6, 4) puzzle, where challenge solvability was approximately
25%, and the (6, 6, 6) puzzle, where challenge solvability was
less than 5%.

A. Components and Algorithms

Here we discuss two different sets of physical components and
their resulting PCG algorithms that can be used for challenge
setup for Boxoff.

The components of a physical BoxOff puzzle consist of
circular tokens equal to the number of grid squares. These
tokens are equally distributed among the number of colors.
With these components, the solver can employ a simple
shuffling algorithm to create a challenge.

Shuffled: Shuffle the color tokens randomly, and
arrange them into a grid.

We can use the multinomial theorem to determine that this
method can create (hw)!

c!k
, where k = hw

c . In the (4, 6, 4) puzzle
this is ≈ 1011 possible challenges. We acknowledge here
and in subsequent calculations that rotational, horizontal, and
vertical symmetry will alter the precise number of challenges,
but not by an order of magnitude.

This shuffling works very well on moderate sized boards
with few colors, achieving near 100% solvability, but as
demonstrated by Browne and Maire, it suffers when applied to
more colors, as shown in Figure 3. The uniform nature of the
shuffling appears to prevent a critical mass of adjacent tokens
of the same color. Such adjacent tokens are the only way Rule
1 above can be fulfilled so that more distant tokens can then
be eliminated via Rule 2.

To address this issue, we introduce an entangled abstraction
for creating challenges using L-shaped tiles, as shown in
Figure 4. These tiles allow us to entangle the colors on the
tiles to create particular local color distributions. Our goal in
creating these tiles is to encourage more adjacent tokens of the
same color. However, we also must avoid creating situations
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Fig. 3. A sample (6, 6, 6) BoxOff challenge, generated with a simple shuffle
of the 36 color tokens.

Fig. 4. Sample L-Tiles for BoxOff challenge creation. Tiles can be rotated
180 degrees, and the dashed line shows how they can be flipped.

where all tiles are adjacent to tokens of the same color, else
the puzzle becomes trivial to solve.

For both the 4×6 and 6×6 grids, each tile is composed
of exactly two squares of the same color, which we label S,
and one square of a different color, labeled D. Each color
is chosen as S twice to ensure an equal distribution of the
adjacent squares. We then distribute the third square colors
using a cyclic arrangement of the colors, as shown in Figure
5, where arrows are drawn from S to D for each tile in the
set. To increase the number of possible challenges, these tiles
can be flipped to a mirror image along the center square of
the L.

Each of these tiles has two possible orientations, for a total
of 2tt!, where t = hw

3 , for ≈ 106 possible challenges in the
(4, 6, 4) puzzle. The algorithm to create a challenge then is
as follows:

L-Tiles: Shuffle and flip the tiles randomly, then
arrange into a grid of connected 2×3 subgrids.

Figure 6 shows a (4, 6, 4) grid created with L-tiles. To
physically play BoxOff with this tile setup, the solver will need
to place neutral tokens on each square as they are eliminated,
continuing until the board is full of tokens. We note that this
provides an additional advantage of preserving the challenge
throughout play; should the solver fail, all neutral tokens can
be removed from the tiles and another attempt to solve the
challenge can be made.

B. Evaluation

We encoded a Monte Carlo BoxOff challenge generator using
C#, and implemented a breadth-first solver for BoxOff chal-

Fig. 5. Cycle of color connections used to construct L-Tiles for BoxOff
challenges, (4, 6, 4) on the left, and (6, 6, 6) challenges on the right.

Fig. 6. A sample (4, 6, 4) BoxOff challenge, generated using L-Tiles.

lenges. For each PCG algorithm, we generated 1000 random
challenges. For each generated challenge in our trials, we
recorded if the challenge was solvable. The code used for
our simulations for this and subsequent puzzles is available
on Github 4. To enable testing for statistical significance on
solvability between these algorithms, we divided our pool of
generated challenges into 10 trials of 100 challenges. We
repeated this for both the (4, 6, 4) puzzle and the (6, 6, 6)
puzzle.

We will use two criteria to quantify each of the above
components and algorithms. First, we judge a PCG algorithm
to be working well when a high percentage of generated
challenges are solvable by our solver. Beyond solvability, we
also wish for PCG algorithms to maintain or improve on the
challenge interest for the basic Shuffled algorithm.

1) Solvability: Figure 7 shows the challenge solvability, in
red with slashes, for the (4, 6, 4) BoxOff. This plot displays
the distribution of the two PCG algorithms across the 10
trials in a box-and-whisker plot. We found the L-Tiles setup
method produces solvable challenges at a rate of 88%, a
marked increase over the Shuffled probability of 27%, with
this difference being statistically significant. Similarly, Figure
7 also shows the solvability distributions in red for the (6, 6, 6)
puzzle. We again saw a drastic increase in solvability, moving
from 3% for Shuffled up to 57% for L-Tiles.

2) Interest: Following Browne and Maire [16], if a chal-
lenge is solvable by the solver choosing random moves each
time, then the challenge lacks interest. Denoting the proba-
bility of solvability using the breadth-first search solver as

4http://github.com/mgoadric/entangled-components
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Fig. 7. Effect of challenge generation algorithms on solvability for BoxOff
(4, 6, 4) and (6, 6, 6). P (Sp) denoted in red with hatching, and P (Sr) shown
in blue with dots.

P (Sp) and the probability of the random solver as P (Sr),
we can calculate P (Sp)− P (Sr), the difference between the
intelligent and random solvability. Figure 7 also shows, in blue
with dots, the solvability rate for these algorithm when using
a random solver.

We see in both cases for L-Tiles, there is an increase in
the random solver performance over Shuffled. However, there
remains a significant gap between the general and random
solvability in both puzzles. For the (4, 6, 4) puzzle, this
difference is 62%, and for the (6, 6, 6) puzzle, this difference
is 50%. We can conclude that while more easy challenges
are generated from L-Tiles, the large majority of generated
solvable challenges involve interesting solutions.

III. PRETZEL

The Montana family of patience card games includes varia-
tions such as Gaps, Spaces, Vacancies, Clown, Paganini, Red
Moon, and Blue Moon. One variant, which allows no re-
shuffles or re-deals, is a puzzle described and named by de
Bruijn [15] called Pretzel solitaire.

To set up a Pretzel challenge, denoted as (k, n), where k
represents the number of suits and n represents the number of
ranks in each suit, the solver shuffles a deck containing one
card for each of n ranks in k suits. The shuffled cards are
dealt face-up into a grid with k rows, each with n columns.
The solver then removes the lowest ranked card of each suit
(traditionally aces) and places them in a new column to the left
of the existing grid in a prescribed order (traditionally for four
suits, from top to bottom: spades[♠], hearts[♥], diamonds[♦],
clubs[♣]). Doing so vacates k cells in the grid, thereafter
called holes.

The solver’s goal is to arrange all cards into ascending
sorted order, one suit per row, following a single rule:

1) A card may be moved from any grid location into any
hole only if the card being moved is of the same suit
and exactly one rank higher than the card immediately
to the hole’s left.

Fig. 8. Pretzel solitaire challenge with four suits and eight ranks, generated
with the Sequential Suits method.

A. Components and Algorithms

Here we explore different PCG algorithms that can be used
for Pretzel challenge setup. Each algorithm uses the features
of the existing components, a standard French deck of cards,
in different ways. We start with the traditional method of
straightforwardly shuffling and dealing.

Shuffled: Shuffle the entire deck and deal all cards
into the grid, left to right, top to bottom.

The number of possible challenges that result from the
standard shuffle is the total number of permutations of cards in
the deck, namely (kn)!. For the (4, 4) case, this is 16! ≈ 1013

distinct challenges.
In his paper, de Bruijn empirically established a solvability

of 45% for the (4, 4) case with a Shuffled setup. In an attempt
to improve solvability with the next two setup algorithms, we
introduce entanglement of the cards by first dividing the deck
into smaller decks according to suit. The two algorithms differ
in how they distribute these entangled components to complete
the setup. Although the entanglement is not preserved during
play, the lasting effects of deck substitution during setup are
nonetheless observable by measures similar to the other games
we explored.

Sequential Suits: Divide the deck into k smaller
decks, each comprising all cards of a single suit.
Shuffle each suit deck separately. Deal the top card
from the first suit deck, then the top card from the
second suit deck, and so on. After the top card of
each suit deck has been dealt, return to the first suit
deck and deal the top card, then the top card of the
second suit deck, and so on. Proceed in like fashion
until all cards have been dealt, left to right, top to
bottom.

Figure 8 shows a sample Pretzel solitaire challenge with
four suits and eight ranks, generated with the Sequential Suits
method. The Sequential Suits setup algorithm generates n!k

possible challenges. For the sake of comparison with Shuffled,
the (4, 4) case with Sequential Suits provides 4!4 ≈ 105

distinct challenges.
Depending on the ratio of k to n, challenges generated by

this algorithm exhibit various distinct vertical or diagonal suit
patterns across the play grid. After observing some gains in
solvability arising from such patterns, we pushed the pattern
to its logical limit:
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Fig. 9. Effect of challenge generation algorithms on solvability for Pretzel,
four suits and 2-9 ranks.

Banded Suits: Divide the deck into k smaller decks,
each comprising all cards of a single suit. Shuffle
each suit deck separately. Deal all cards from the
first suit deck top to bottom, left to right. After
each suit deck is exhausted, continue dealing with
the next suit deck. Proceed in like fashion until all
cards have been dealt, top to bottom, left to right.

Dealing the cards from top to bottom, left to right is
essential to the Banded Suits algorithm. In other words, the
solver deals the first card into the upper-left location in the
grid, then deals the next directly below the first in the same
column, and so on. Only as each column is filled are cards
dealt into the next column to the right. The result is k bold,
vertical suit bands.

As with Sequential Suits, distinct challenges created from
Banded Suits is equal to n!k. Also, note that Sequential Suits
and Banded Suits produce identical suit patterns when k = n,
but differing patterns for k 6= n.

B. Evaluation

As with BoxOff, we encoded a Monte Carlo Pretzel challenge
generator using C#, and a breadth-first solver for Pretzel
challenges. For each PCG algorithm, we generated 1000
random challenges. For each generated challenge in our trials,
we recorded whether the challenge was solvable, and if so,
we also recorded the minimum solution length found with
our solver. To enable testing for statistical significance on
solvability between these algorithms, we divided our pool of
generated challenges into 10 trials of 100 challenges.

1) Solvability: Figure 9 compares the solvability of our
three setup algorithms for four suits and two through nine
ranks per suit. Solvability is displayed using the blue dotted
line for Shuffled, the orange dashed line for Sequential Suits,
and the solid green line for Banded Suits. Although the
number of ranks is always a whole number, and intermediate,
fractional rank values are therefore not sensible, we have used
continuous lines in the figure to better depict overall trends
for all algorithms tested and to highlight the oscillating nature
of solvability for Sequential Suits.

Fig. 10. Histograms showing the effect of Pretzel challenge generation
algorithms on solution length, four suits and eight ranks.

Fig. 11. Effect of challenge generation algorithms on P (Sp) − P (Sr) for
Pretzel, four suits and 2-9 ranks.

We found that whether entanglement helped or hindered
solvability when using the Sequential Suits setup algorithm
is dependent on whether the number of ranks in the deck is
even or odd. We also observed a marked increase in solvability
with Banded Suits as compared to Shuffled, with the increase
being statistically significant for all ranks tested. We include
more details on the success of entangled components in
Section V.

The cost of solvability gains for Banded Suits is a decrease
in minimum required solution length (in moves) which became
statistically significant as the number of ranks increased.
As a specific example, Figure 10 graphs the distribution of
minimum required solution lengths recorded by our breadth-
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first solver for each of the setup algorithms in the (4, 8) case.
The median minimum required solution lengths for Shuffled
and Sequential Suits were identical at 44, while the median
for Banded Suits dipped to 42. As with BoxOff, however, we
judge the interest of challenges not primarily by their solution
lengths, but by their resistance to random play.

2) Interest: Again denoting the probability of solving using
the breadth-first search solver as P (Sp) and the probability of
the random solver as P (Sr), we calculated P (Sp) − P (Sr)
using each of the setup algorithms across two through nine
ranks in four suits. The results are shown in Figure 11. The
blue dotted line displays this value for Shuffled, the orange
dashed line represents Sequential Suits, and the solid green
line shows Banded Suits.

Here we see that Banded Suits exhibits the desired resis-
tance to random play. For (4, 4) Pretzels, Sequential Suits
and Banded Suits perform similarly. This is expected since
they produce identical suit patterns for this case. But at five
ranks and beyond, intelligent play outpaces random play by a
significant margin as compared with Shuffled and Sequential
Suits. We conclude that despite a slight decrease in minimum
required solution length for Banded Suits, interest is retained.

IV. FUJISAN

Fujisan was created specifically for the piecepack game system
[18]. In Fujisan, a solver must find a way to cooperatively
move four Shinto Priests to the top of Mt. Fuji through
incremental steps up the mountainside. Functionally, the area
of play consists of a grid of spaces arranged into two rows
by twelve columns. Each space contains a single value in the
range of 0 to 5, inclusive. The two middle columns together
comprise the mountain summit, while each other column forms
a step of the mountain. Four pawns, representing the Priests,
start off the mountain, just outside the two columns furthest
from the summit.

The goal of the solver is to move Priests one at a time until
all four are at the summit. A Priest can be moved according
to the following rules:

1) No more than one Priest may occupy a space at any
given time.

2) A Priest may move onto a space if that space’s value
matches the number of unoccupied spaces the Priest
must move in a straight line, left or right, to get there
(including the destination space itself, but not including
the Priest’s starting space).

a) Occupied spaces (containing intervening Priests)
are not counted when determining the distance
from a Priest to a given space.

3) A Priest may move freely up and down between the two
spaces of any given step of the mountain.

a) A Priest’s first move from the starting position
must land on the mountain; that is, the Priest
cannot move up or down while on the ground.

4) A Priest that lands on the mountain’s summit can no
longer move left or right, but may still move freely up

Fig. 12. The start of a solution demonstrating the rules of Priest movement
in Fujisan, with move notation followed by the matching rule.

or down within the column.5

a) A Priest may pass over the summit as part of a
move.

Figure 12 shows a visual example of how these rules can
be used to begin solving a sample challenge. We denote the
goal summit spaces in gray.

A. Components and Algorithms

Here we explore three different sets of physical components
and their resulting PCG algorithms that can be used for
challenge setup for Fujisan.

The piecepack is a set of board game parts that can be used
to design and play a wide variety of games [18]. The mountain
in Fujisan was constructed with game tiles each marked with a
2×2 grid. The values were added using 24 round coins, which
represented the cross product of two sets: suits (sun, moon,
crown, arms) and values (0, 1, 2, 3, 4, 5). Values are indicated
on the front of the coin, while suits are found on the back.

We examine first a simple algorithm that can make use of
the piecepack coin components to generate randomness.

Shuffled: Shuffle the 24 coins face-down. For each
space on the board, randomly select one coin and
place it face-up on this space.

We can use the multinomial theorem to determine that this
method can create 24!

4!6 ≈ 1014 possible challenges. We ac-
knowledge here and in subsequent calculations that rotational,
horizontal, and vertical symmetry will alter the precise number
of challenges, but not by an order of magnitude.

5The original rules of Fujisan also allowed a Priest on the summit to freely
move left and right at the summit. The summit rule as written here was made
for the Engraved Tiles version, and we used this formulation of the rule for
the computational simulations of all versions discussed.
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Fig. 13. Sample Engraved Fujisan Tiles.

However, if two 0 coins end up placed in the same column,
then it becomes impossible to move a Priest onto that column.
This creates holes in our challenges and reduces the number of
solvable setups. More importantly, when both spaces of either
of the summit columns contain 0s, the challenge becomes
impossible to solve.

The original published Fujisan ruleset was devised to ad-
dress the issue of double 0 steps, adding the constraint that
each step must have two different values. This was achieved by
using the suit information on the backs of the coins to entangle
the coins as they are placed, similar to the Sequential Suits
method for Pretzel.

Piecepack: Shuffle the 24 coins face-down, and
separate into four groups based on their suit. Then
repeatedly place two coins on the two right-most
available spaces, choosing from each of the suits in
turn (sun, moon, crown, arms).

With each space limited to choosing from a particular suit,
the Piecepack algorithm will generate 6!4 ≈ 1010 possible
challenges. This algorithm will guarantee there are no double
numbers on a step, thus eliminating the double 0 issue noted
above.

Another way to entangle the components in Fujisan is to
combine the values with the 2×2 tiles, engraving numerals
onto the spaces, similar to the L-Tiles method for BoxOff.
Here, we explore creating tiles with every possible pairing of
values 0 through 5, including pairing a value with itself, and
repeating these values diagonally on the tiles. Example tiles of
this style are shown in Figure 13. We remove the 0:0 pairing,
since it can create unsolvable challenges, leaving 20 tiles.

Engraved Tiles: Shuffle the tiles face-down. Then,
assemble the mountain by turning tiles face-up,
using six for the bottom layer, five for the next layer,
then four, then three, and finally two. The summit
will be the center four spaces.

This further constrains each pair of numbers to appear no
more than once in the puzzle, except for the top two tiles.
There are 20 possible tiles, and only 10 of them can be seen
once the puzzle is constructed, as shown in Figure 14. 15
of these tiles have two possible orientations, for a total of∑10

i=5

(
15
i

)(
5

10−i

)
2i10! ≈ 1013 possible challenges.

Furthermore, a standard double-six domino set, which in-
cludes 28 dominoes, can be used as entangled components. If

Fig. 14. A sample Fujisan challenge from the Engraved Tiles algorithm.

we eliminate those dominoes that include a 6, along with all
doubles, we are left with 15 dominoes.

Dominoes: Shuffle the dominoes face-down. Place
12 of these dominoes face-up in a row to create the
mountain. Place a face-down domino on each side
of the mountain to denote the starting locations for
the Priests. Place the remaining face-down domino
horizontally in the middle to raise up the two central
dominoes, denoting the summit.

This constraint is similar to Engraved Tiles, but with a
subset of the value pairs, thus a different probability on their
selection. Additionally, unlike Engraved Tiles, the summit
values are distinct from the two steps closest the summit.
With 15 possible dominoes, only 12 of them are used in the
challenge, as shown in Figure 15. Each of these dominoes has
two possible orientations, for a total of

(
15
12

)
21212! ≈ 1014

possible challenges.

B. Evaluation

We encoded a Monte Carlo Fujisan challenge generator
using C#, along with an A* solver for Fujisan challenges.
Our admissible heuristic for A* is the number of empty spaces
on the summit. For each PCG algorithm, we generated 1000
random challenges. For each generated challenge in our trials,
we recorded if the challenge was solvable, and if so, we
also recorded the minimum solution length found with our
A* solver. To enable testing for statistical significance on
solvability between these algorithms, we divided our pool of
generated challenges into 10 trials of 100 challenges.

1) Solvability: Figure 16 shows the distribution of solvabil-
ity for the four PCG algorithms across the 10 trials in a box-
and-whisker plot. Each method produces a healthy probability
of solvable challenges. Shuffled has the lowest mean value
for solvability at 85%, and this result is significantly lower
than the other three algorithms, which is confirmed by t-tests
using a p-value of 0.05. Within the top three algorithms, only
Dominoes is statistically higher than Piecepack.

2) Interest: Applying the interest metric of Brown and
Maire [16] across all of our PCG algorithms, we found
that P (Sr), the probability that a random solver would win,
was less than 0.003, making P (Sp) − P (Sr) equivalent to
solvability. As our goal is to determine if the above algorithms
change the interest distribution of generated challenges, we
consider two other measures found by Jarušek and Pelánek to
be correlated with challenge difficulty for one-way transport
puzzles: the minimum number of moves required to solve the
challenge, and the number of counter-intuitive moves along
the minimum solution path. [19] [20]

Fig. 15. A sample Fujisan challenge from the Dominoes algorithm.
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Fig. 16. Effect of Fujisan challenge generation algorithms on solvability.

First, we determined that a move in Fujisan is counter-
intuitive if it involves moving a Priest further away from the
summit. For each solvable challenge, we counted the number
of counter-intuitive moves used on the minimum solution path
length. Using this metric, values ranged from 0-8, and we
found that there was no statistical difference between the four
algorithms.

Second, we calculated the distribution of minimum solution
path length generated by each algorithm. We compared here
the median length generated by each algorithm. The shortest
possible solution to a Fujisan challenge involves eight moves,
while the longest-known constructed challenge requires 62
moves6.

Figure 17 shows histograms of the minimum solution length
for solvable challenges, pooled across all trials for each
algorithm. The median is denoted with a dotted line. Our
algorithms appear to follow a Poisson distribution rather than a
normal distribution, since the smallest possible solution length
for any challenge is 8, and the maximum solution length is
currently unbounded. We employ a Kruskal-Wallis H-test [21]
to determine if the median length of our four algorithms is
statistically the same, and we rejected this null hypothesis very
strongly, with a p-value of 6.4× 10−9.

The algorithm responsible for this result was Engraved
Tiles. We can see a strong tendency to have shorter solution
lengths, with almost 10% of challenges having a solution
length of eight or nine, whereas for Dominoes, this is true
for only 3% of challenges. In Engraved Tiles, there are five
tiles that contain a zero value; since there will be ten total tiles
hidden, on average a challenge will contain 2.5 zero values. It
appears that zero values are one part of what makes Fujisan
challenges interesting.

V. ENTANGLED COMPONENTS

Recall that we define components to become entangled if
their arrangement is no longer independent, either due to
algorithmic constraints, or having been subsumed by new,
larger components. In each of the explored puzzles above,
we see that entangled components can be used to produce

6http://www.ludism.org/ppwiki/Fuji-san#Heading9

Fig. 17. Histograms showing the effect of Fujisan challenge generation
algorithms on minimum solution length.

challenges with higher solvability without sacrificing the in-
teresting qualities of the puzzle. Here we provide evidence
that this is due to aligning the entanglements with desirable
portions of the underlying puzzle mechanics. For each puzzle,
metrics can be found that are correlated with higher solvability.
Entangled components can then be biased toward solvability
by encouraging these metrics in generated challenges.

In BoxOff, Rule 1 underscores the importance of adjacent
grid squares of the same color, as they are the first moves
available in the game. The (4, 6, 4) board contains 38 unique
pairs of adjacent grid squares. If we randomly distribute the
four colors using the Shuffled method, on average a pair will
be the same color 22% of the time. We label this metric pair
equality. However, if we separate the generated challenges
by solvability, we see in Figure 18 that while unsolvable
challenges average 20% pair equality, for solvable challenges
the average increases to 26%, and this difference is statistically
significant.

Through entanglement, the L-Tiles constrain adjacent pairs
such that at least eight of them are the same color, resulting in
a minimum of 21% pair equality. Thus, these challenges are
more likely to be in the solvable range, as shown in Figure 18,
with 32% pair equality for unsolvable challenges, and 34%
pair equality for those that are solvable. To verify that the
entangled components must align with the puzzle mechanics,
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Fig. 18. Average pair equality for (4, 6, 4) color BoxOff challenges across
each setup algorithm. Solvable challenges shown in black, and unsolvable
challenges shown in white.

we also tested a configuration of L-Tiles for the (4, 6, 4)
puzzle with three unique colors on each tile, evenly distributed
among the colors. This resulted in an overall solvability of
8.2%, much worse than using the original Shuffled algorithm.

To better understand how entangled components improve
solvability for Pretzel solitaire, it is revealing to compare the
dip in solvability for (4, 3) Sequential Suits with the dramatic
spike in solvability for (4, 4) Sequential Suits, both clearly
evident in Figure 9. As discussed by de Bruijn, sequences
of necessarily dependent moves that turn back on themselves
to form loops, which de Bruijn calls cyclic blockades, are
the bane of the Pretzel solver. Once a cyclic blockade forms,
the Pretzel is no longer solvable. These can either be present
immediately following the deal or can develop during the
course of play. (4, 3) Pretzels with Sequential Suits are highly
prone to at least two shapes of dealt cyclic blockades that are
readily detected.

To recognize the first, we observe that exactly three spades
will be dealt into the grid in a diagonal line, from the first
column of the first row to the third column of the third row.
There is a 1 in 6 chance that the 3♠ will be dealt into the first
column of the first row and the 2♠ into the third column of the
third row. When this occurs, the 2♠ can never move into its
goal location, occupied by the 3♠, which itself cannot move
into a hole following the 2♠, since the 2♠ is in the rightmost
column and is unable to leave that column. We shall call this
shape of cyclic blockade a Ducking Crab.

So, at least 1 in 6 (4, 3) Pretzels with Sequential Suits
are unsolvable immediately after setup. Notice, however, that
a Ducking Crab is just as probable for diamonds, so at least
1 in 3 are immediately unsolvable.

A second shape of cyclic blockade that plagues Sequential
Suits for the (4, 3) case occurs when the 2♣ and 2♥ are dealt
into each other’s goal locations, preventing either from ever
moving. Such Duelling Deuces occur in 1 of 9 challenges.

Ducking Crabs and Duelling Deuces are not, of course,
exclusive to (4, 3) Pretzels with Sequential Suits. Nor have
we attempted to identify and enumerate an exhaustive list of
every possible shape for cyclic blockades. We offer Ducking

Fig. 19. Average connectedness for Fujisan challenges across each setup
algorithm. Solvable challenges shown in black, and unsolvable challenges
shown in white.

Crabs and Duelling Deuces merely as examples of the kinds of
structures that limit solvability for Pretzels. They are suitable
examples not only because they account for a significant
portion of unsolvable (4, 3) Pretzels with Sequential Suits,
but also because it is plain to see how both are completely
avoided by Sequential Suits for the (4, 4) case and indeed
for all cases S = V , as well as Banded Suits. With a stripe
of spades filling the first column, there can only ever be a
single 2 in the column, preventing Deulling Deuces. Although
the 3♠ might be dealt into 2♠’s goal location, the 2♠ can
never be dealt into the rightmost column, so Ducking Crabs
are likewise impossible. Thus for Pretzel solitaire, entangled
components help to avoid some, but not all, of the structures
that destroy solvability.

For Fujisan, the entangled components are a direct result
of the puzzle movement mechanics. We first develop a metric
called connectivity based on Rule 2 to explore the connections
between steps in a challenge. We say step A is connected
to step B in Fujisan if there is a move available according
to Rule 2 from B to A. This metric, only an approximation
of true puzzle connectivity as it ignores connections possible
from Rule 2.a with intermediate Priests, contains enough
information to bias our entangled components.

Figure 19 shows the average step connectivity within a
challenge for each setup algorithm, differentiating solvable
challenges in black from unsolvable challenges in white. In
the Shuffled algorithm, we can see a large divide between
solvable and unsolvable challenges, and across all algorithms,
higher connectivity is always related to higher solvability.
Also, both Piecepack and Dominoes require that each step
has two unique values. In these two algorithms, this uniqueness
constraint strongly increases the connectivity of both solvable
and unsolvable challenges, but the divide remains intact.

However, even if each step is well-connected to other steps,
the connections could form patterns and loops between the
steps, thus breaking the potential Priest movement into disjoint
sets. If we add a restriction that each step pair in a challenge
be a unique set of values, this will cause the connections
between steps to be more distributed and bind the puzzle
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together as a whole. In our experiments, we found that Shuffled
challenges which fit this restriction can be solved at a rate
of 89%, a statistical improvement over the general Shuffled
challenge population. As we noted earlier, the Engraved Tiles
and Dominoes incorporate this prohibition on the repetition of
steps as they subsume the coins into larger components. In fact,
the most successful algorithm, Dominoes, combines both of
these constraints to create well-connected and well-distributed
challenges.

VI. CONCLUSION

Our work introduces the idea of entangled components for
physical solitaire puzzle games, and explores their implications
for procedural content generation algorithms across three puz-
zles. We can see that subtle changes in the game components
can affect their random distribution, leading to large-scale
changes on the generated challenges. When aligned with the
puzzle mechanics, entangled components lead to increased
challenge solvability without sacrificing the interesting nature
of the puzzle.

There are many open questions related to physical games
and PCG. First, we believe there is work to be done in
formalizing, and validating with human subjects, an ease of
physical setup metric. While the Shuffled algorithm for each
puzzle is very simple to execute, some of the more entangled
algorithms could be time-consuming and tedious for a human
to implement. A simple approximation metric would be the
time complexity of the algorithm; however, certain operations
that are straightforward to a computer can be difficult for
humans to track, and vice versa. With a formal metric, game
designers could be inclined to include more intricate PCG
algorithms when provided guarantees these algorithms can
reasonably be executed by a human player.

A further point to clarify is the exact relationship between
challenge interest and challenge difficulty. We focused here
on how entangled components maintained challenge interest,
but this simplifies the potential for gradations of challenge
difficulty within each puzzle. Validating a sophisticated diffi-
culty metric for each puzzle, again with human subject tests as
disussed in Jarušek and Pelánek [20] , could further illustrate
the effects of entangled components.

Finally, are there general entangled methods that allow
solvers to construct challenges online to guarantee solvability,
as opposed to the generate-and-test algorithms discussed here?
While this may be possible in certain situations, care must be
taken that the construction process does not give away the
solution to the challenge.
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