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Abstract. Our research explores the application of Inductive Logic Pro-
gramming to a new domain involving decapod crustacean claws. We find
that we can distinguish dactyl shapes by automatically extracting rela-
tional features that describe their underlying spatial structure. We first
use medial axis techniques to find the shock graph of each dactyl outline,
which is then converted into a first-order logic representation capturing
the connections, distances and angles between the nodes in this graph.
We then use Aleph to find relational classification rules based on the
shock graph representations. These relational rules provide a concise and
human-understandable way to describe the morphological differences be-
tween closely related decapods, and can be seen as a first step to creating
automatically learned quantitative taxonomic keys.

1 Introduction

Because decapod crustacean claws are potentially affected by numerous selective
agents, they are excellent candidates for evolutionary studies of morphology.
Despite being commonly found in shell-rich fossil assemblages, decapod dactyls
(i.e., claw movable fingers) are usually ignored because of the assumption that
they can be identified only to high taxonomic levels.

However, outline-based and geometric morphometric methods have success-
fully discriminated the dactyls of sibling species and hybrids of the stone crab
Menippe [2], closely related species of Panopeus [3] and other xanthoid genera
including Cataleptodius, Dyspanopeus and Eriphia [1]. Principal component anal-
yses of elliptic Fourier descriptors [6] also have been used to quantify ontogenetic
shape trajectories and wear in dactyls [1]. Although these techniques allow sta-
tistical tests of differences in dactyl morphologies, dactyl shapes must still be
described qualitatively.

Our research introduces a new method for distinguishing dactyl shapes by
automatically extracting relational features that describe their underlying spatial
structure. Using Aleph [9], an Inductive Logic Programming (ILP) algorithm,
we learn general rules that capture informative biological relationships, and find
that we can limit overfitting by restricting ourselves to a simple representation
of the data.
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Fig. 1. Scanning Electron Microscope images of Eriphia gonagra (a) and
Menippe mercenaria (b) dactyls, and their corresponding shock graphs, (c) and
(d).

2 Dataset Formulation

Our dataset for this study consists of 38 dactyl images, 12 belonging to Eriphia
gonagra and 26 belonging to Menippe mercenaria. Figure 1 (a) and (b) show
representative left minor dactyls of these two species. We first use medial axis
techniques, used for shape recognition algorithms in computer vision, to find the
shock graph of each dactyl outline. Next, these shock graphs are converted into
a first-order logic representation capturing the connections, distances and angles
between the nodes in each graph.

2.1 Shock Graphs

We begin with the dataset from Agnew [1], where each dactyl image was scaled
and aligned using the SHAPE software [5]. To create relational features for each
dactyl and expose the underlying skeleton of the images, we chose to convert
each image into a shock graph [4] using the flux skeleton implementation of
ShapeMatcher [7]. A shock graph is created from a 2D image by first converting
the image into an outline. This outline is then thinned along the normal vector
according to the calculated flux at each point. Where these normal vectors meet,
edges, end points and branch points can be found when looking at the image
pixels.

Shock graphs have been used in computer vision as a technique for object
recognition; when combined with algorithms for graph similarity, they can help
identify when an object has been rotated or distorted over time and space.
Sample shock graphs for each species can be found in Figure 1 (c) and (d);
note that the top bump in Eriphia gonagra creates an edge not seen in Menippe
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Predicate Type Predicate Name
Head eriphia(+example).
Basic hasNode(+example, -node).

hasEdge(+example, -edge, -node, -node).
angle(+edge, +edge, -float).
distance(+node, +node, -float).
(+float)>(+float).
(+float)<(+float).
(+float)=<(+float).
(+float)>=(+float).

Acute obtuse(+float).
acute(+float).

Full interiorNode(+node).
between0and20(+float).
. . .
between280and300(+float).

Table 1. Background knowledge and modes generated from shock graph repre-
sentation.

mercenaria graphs. Also note the difference in length and angle of the bottom
bump in M. mercenaria. We believe this shape representation can be used to
qualitatively understand the phenotypic variations present between these two
species.

2.2 First-order representation and Aleph

Aleph [9] is a top-down ILP covering algorithm, written completely in Prolog.
As input, Aleph takes background knowledge in the form of either intensional or
extensional facts, a list of modes declaring how literals can be chained together,
and a designation of one literal as the head predicate to be learned. We chose our
head predicate to be the smaller class of Eriphia gonagra dactyls, and investigate
three levels of background knowledge, shown in Table 1.

First, our basic extentional facts are based on the shock graph, such that
we create two predicates, hasNode and hasEdge, to connect the nodes and edges
with each example. We also calculate the angle between each adjacent edge, the
distance between any two nodes in the graph, and include the predicates of >,
<, >= and =< to compare these angles and distances.

The next level of background knowledge, acute, includes intensional defini-
tions for acute, floating-point numbers less than 90, and obtuse, floating-point
numbers greater than 90. Finally, the full background knowledge level includes
a predicate for designating nodes as being adjacent to two other nodes with
interiorNode, and between predicates to generalize floating-point numbers to
into bins of size 20, ranging from 0 to a maximum of 300 because of the maximum
image size.
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eriphia(A) :-
hasEdge(A,B,C,D), hasEdge(A,E,D,F), hasEdge(A,G,F,H), distance(D,H,I),
distance(F,C,J), J<I, hasEdge(A,K,F,L), distance(L,H,M),
J<M, distance(L,C,N), J<N, hasEdge(A,O,P,Q),
distance(Q,H,R), M<R, distance(L,Q,S), J<S.

Fig. 2. Sample rule learned from fold 0, which covered 9 positive and 0 negative
training examples, and 3 positive and 0 negative testing examples.
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Fig. 3. One possible match of the the nodes C, D, F, H, L, P and Q from the
rule in Figure 2 when applied to the first Eriphia gonagra example.

3 Experimental Results

We divided the data of 38 examples into five folds of roughly equal size, dis-
tributing the positive and negative examples separately to ensure a distribution
in each subfold comparable to the complete dataset. In Aleph, we used the in-
duce method of exploring and removing seed examples, with the heuristic search
method and m-estimate evaluation function, setting m to 20. Other parameter
settings changed were to have a minimum accuracy of 0.2, a search depth of 10, a
variable-chaining length of 20, a maximum clause length of 20, and a maximum
search nodes explored of 20,000.

Figure 2 shows a sample rule learned from fold 0 using only the basic back-
ground knowledge. This rule captures all of the positive Eriphia gonagra exam-
ples and none of the negative examples, in both the training set and testing set.
It includes a sequence of connected nodes, C to D to F to H, where the distance
between nodes C and F, called J, is less than other calculated distances in this
rule. A corresponding distance J is learned in almost all folds, and when this
rule is applied to the positive examples, as seen in Figure 3, node C frequently
corresponds to the closer muscle insertion point and H to the tip point.
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Algorithm Accuracy Precision Recall F1 Score
Basic 89.4 90.0 75.0 81.8
Acute 86.8 88.8 66.6 76.2
Full 81.6 72.7 66.6 69.6

All Pos 31.6 31.6 100.0 48.0
All Neg 68.4 - 0.0 -

Table 2. Pooled results from five-fold cross-validation experiments, comparing
Basic, Acute and Full background knowledge.

We believe natural selection could be acting on the distances in this learned
relationship between these areas of the shock graph. Because Menippe feeds
almost exclusively on hard-shelled prey and Eriphia is more of an opportunistic
generalist, Menippe should have claws with stronger biting forces than Eriphia
[11]. Our learned rule discusses the length and angle of the closer muscle insertion
point in relation to the tip. This relationship is directly related to the mechanical
advantage of the claw, such that a shorter length in E. gonagra will result in
weaker closing strength.

We compare the results of using Aleph and each of the three levels of back-
ground knowledge (basic, acute and full) with two baseline algorithms, one which
classifies all examples as positive, and another which classifies all examples as
negative. The true positive, false positive, true negative and false negative results
across the five testsets are pooled to find the overall accuracy, precision, recall
and F1 score for each algorithm. These results are reported in Table 2, and we
can see Aleph clearly outperforms the baseline algorithms.

When comparing the different levels of background knowledge, we find that
simpler is better. The heuristic search employed by Aleph incorporates the ad-
ditional background knowledge predicates into our learned rules, however, these
rules have a lower testset performance and tend to overfit, scoring lower than
the basic background knowledge across all evaluation metrics.

4 Conclusions and Future Work

This research demonstrates the feasibility of learning relational features to distin-
guish between decapod dactyl shapes. By combining techniques from computer
vision and ILP, we can learn general rules that are informative to both biologists
and paleobiologists, and find that we can limit overfitting by restricting ourselves
to a simple representation of the data.

Recent work by Macrini et al. [8] extends shock graphs to bone graphs to
decrease their brittle dependency on noise variations of the initial shape. We
plan to replace shock graphs with bone graphs as the basis for learning, and
expect to see increases in our performance as well as more general features.

Suard et al. [10] have investigated kernel methods applied to shock graphs.
They propositionalize many features of the graphs to create their kernels for
the purpose of shape retrieval and image clustering, as opposed to our research
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of learning explanatory and discriminatory patterns using the relational graph
descriptions. Although our findings point to less background knowledge instead
of more, we plan to investigate some of their features and hopefully increase the
understandability of our rules without sacrificing their generalization.

Our current dataset is quite small, with test folds having only 2 or 3 positive
examples. We plan to further investigate this approach with a larger dataset
consisting of 970 major and minor dactyls from nine xanthoid crab species. This
dataset will allow us to evaluate whether this method can be used to distinguish
dactyls of several closely related species. Also, because many of the dactyls of
these species change shape with growth, we can quantify those allometric trans-
formations and identify dactyl sizes where species level differences emerge.
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