2 Binary Numbers

We are most familiar with decimal numbers written in base 10 notation, such that there is a ones place, tens place, hundreds place, etc. The language of computers, and some other branches of mathematics, is in binary numbers. Instead of each digit being one of the numbers $\{0,1,2,3,4,5,6,7,8,9\}$, our choices are now $\{0,1\}$. This means our digit places are $1,2,4,8,16$, etc. We will denote binary numbers with a subscript of 2 , to differentiate 100 (one hundred) from 100_{2} (four).

2.1 Binary to Decimal

Every decimal number can be written as an expansion of digits times powers of 10. For example

$$
1729=1 * 1000+7 * 100+2 * 10+9 * 1
$$

or

$$
1729=1 * 10^{3}+7 * 10^{2}+2 * 10^{1}+9 * 10^{0}
$$

Binary numbers can be expanded the same way, except instead of powers of 10 , we have powers of 2 .

$$
10110_{2}=1 * 2^{4}+0 * 2^{3}+1 * 2^{2}+1 * 2^{1}+0 * 2^{0}
$$

or

$$
\begin{aligned}
10110_{2} & =1 * 16+0 * 8+1 * 4+1 * 2+0 * 1 \\
& =16+4+2 \\
& =22
\end{aligned}
$$

2.2 Decimal to Binary

To convert a decimal number n to a binary number

- Find the largest power of two (p) which is less than or equal to the number
- Now repeat the following steps while the number $p>=1$:

A: If $p<=n$, write a 1 , otherwise a 0 , then subtract p from n

B: Divide p by 2

For example, we will convert the number 47. 32 is the largest power of 2 smaller than 47 , so $p=32$.
$32<47$, so write a 1
n now equals $47-32=15$
p now equals $32 / 2=16$
16 is not <15, so write a 0
p now equals $16 / 2=8$
$8<15$, so write a 1
n now equals $15-8=7$
p now equals $8 / 2=4$
$4<7$, so write a 1
n now equals $7-4=3$
p now equals $4 / 2=2$
$2<3$, so write a 1
n now equals $3-2=1$
p now equals $2 / 2=1$
$1<2$, so write a 1
n now equals $1-1=0$
p now equals $1 / 2=0.5$, so we stop.
Our resulting binary number for 47 is 101111_{2}

