CSC 107: Course Notes

Mark Goadrich

January 18, 2012

1 Wisdom of Crowds

1.1 Numerical Wisdom

$$
\begin{gathered}
\text { average }=\frac{\text { sum of answers }}{\text { total }} \\
\text { collective error }=(\text { average guess }- \text { correct answer })^{2} \\
\text { individual error }=(\text { guess }- \text { correct answer })^{2} \\
\text { individual diversity }=(\text { guess }- \text { average guess })^{2} \\
\text { collective error }=\text { average individual error }- \text { average diversity }
\end{gathered}
$$

1.2 Majority Wisdom

This is Pascal's triangle, where each number is the sum of the two numbers above it.

				1				
			1		1			
		1		2		1		
	1		3		3		1	
1		4		6		4		1
.

If we do not care about the ordering of the choices, only the elements, we can define combinations as $\binom{n}{k}$, which is read " n choose k ".

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

$\binom{n}{k}$ is also equal to the $k+1$ th number on the $n+1$ th row of Pascal's Triangle.

Using combinations, we now have a tool to calculate the probability that an event with probability p will occur exactly k times in an experiment repeated n times.

$$
\binom{n}{k} p^{k}(1-p)^{n-k}
$$

And therefore assuming n is odd, the probability that the majority is correct when each individual is correct with probability p is

$$
\sum_{k=\left\lceil\frac{n}{2}\right\rceil}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}
$$

