How to Think Like a
(Python) Programmer

Version 0.9.20

Allen Downey

Green Tea Press

Needham, Massachusetts

Copyright © 2007 Allen Downey.
Restructured and revised 2008 by Mark Goadrich
Printing history:

April 2002: First edition of How to Think Like a Computer Scientist.
August 2007: Major revision, changed title to How to Think Like a (Python) Programmer.

Green Tea Press
9 Washburn Ave
Needham MA 02492

Permission is granted to copy, distribute, and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free Soft-
ware Foundation; with no Invariant Sections, no Front-Cover Texts, and with no Back-Cover
Texts.

The GNU Free Documentation License is available from www.gnu.org or by writing to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

The original form of this book is IXIEX source code. Compiling this IXIEX source has the effect
of generating a device-independent representation of a textbook, which can be converted to other
formats and printed.

The I&TEX source for this book is available from http://www.thinkpython.com

Preface

The strange history of this book

In January 1999 I was preparing to teach an introductory programming class in Java. I
had taught it three times and I was getting frustrated. The failure rate in the class was
too high and even for students who succeeded, the overall level of achievement was too
low.

One of the problems I saw was the books. I had tried three different books (and read
a dozen more), and they all had the same problems. They were too big, with too
much unnecessary detail about Java, and not enough high-level guidance about how to
program. And they all suffered from the trap door effect: they would start out very
gradual and easy, and then somewhere around Chapter 5, the bottom would fall out.
The students would get too much new material, too fast, and I would spend the rest of
the semester picking up the pieces.

Two weeks before the first day of classes, I decided to write my own book. I wrote one
10-page chapter a day for 13 days. I made some revisions on Day 14 and then sent it
out to be photocopied.

My goals were:

* Keep it short. It is better for students to read 10 pages than not read 50 pages.

* Be careful with vocabulary. I tried to minimize the jargon and define each term
at first use.

* Build gradually. To avoid trap doors, I took the most difficult topics and split
them into a series of small steps.

* It’s not about the language; it’s about programming. I included the minumum
useful subset of Java and left out the rest.

I needed a title, so on a whim I chose How to Think Like a Computer Scientist.

My first version was rough, but it worked. Students did the reading, and they under-
stood enough that I could spend class time on the hard topics, the interesting topics and
(most important) letting the students practice.

viii Chapter 0. Preface

As a user and advocate of free software, I believe in the idea Benjamin Franklin ex-
pressed:

“As we enjoy great Advantages from the Inventions of others, we should
be glad of an Opportunity to serve others by any Invention of ours, and
this we should do freely and generously.”

So I released the book under the GNU Free Documenation License, which allows users
to copy, modify, and distribute the book.

What happened next is the cool part. Jeff Elkner, a high school teacher in Virginia,
adopted my book and translated it into Python. He sent me a copy of his translation,
and I had the unusual experience of learning Python by reading my own book.

Jeff and I revised the book, incorporated a case study by Chris Meyers, and released
How to Think Like a Computer Scientist: Learning with Python, also under the GNU
Free Documenation License.

At the same time, my wife and I started Green Tea Press, which distributes several of
my books electronically, and sells How to Think in hard copy.

I have been teaching with this book for more than five years now, and I have done a lot
more Python programming. I still like the structure of the book, but for some time I
have felt the need to make changes:

* Some of the examples in the first edition work better than others. In my classes
I have discarded the less effective ones and developed improvements.

e There are only a few exercises in the first edition. Now I have five years of
quizzes, exams and homeworks to choose from.

* I have been programming in Python for a while now and have a better apprecia-
tion of idiomatic Python. The book is still about programming, not Python, but
now I think the book gets more leverage from the language.

At the same time, Jeff has been working on his own second edition, customized for his
classes. Rather than cram everything into one book (which may be how other books
got so big), we decided to work on different versions. They are both under the Free
Documentation License, so users can choose one or combine material from both.

For my version, I am using the revised title How to Think Like a (Python) Programmer.
This is a more modest goal than the original, but it might be more accurate.

Allen B. Downey
Needham MA

Allen Downey is a Professor of Computer Science at the Franklin W. Olin College of
Engineering.

ix

Contributor List

To paraphrase the philosophy of the Free Software Foundation, this book is free like
free speech, but not necessarily free like free pizza. It came about because of a col-
laboration that would not have been possible without the GNU Free Documentation
License. So we thank the Free Software Foundation for developing this license and, of
course, making it available to us.

We also thank the more than 100 sharp-eyed and thoughtful readers who have sent us
suggestions and corrections over the past few years. In the spirit of free software, we
decided to express our gratitude in the form of a contributor list. Unfortunately, this
list is not complete, but we are doing our best to keep it up to date.

If you have a chance to look through the list, you should realize that each person here
has spared you and all subsequent readers from the confusion of a technical error or a
less-than-transparent explanation, just by sending us a note.

Impossible as it may seem after so many corrections, there may still be errors in this
book. If you should stumble across one, please check the online version of the book at
http://thinkpython.com, which is the most up-to-date version. If the error has not
been corrected, please take a minute to send us email at feedback@thinkpython.com.
If we make a change due to your suggestion, you will appear in the next version of the
contributor list (unless you ask to be omitted). Thank you!

¢ Lloyd Hugh Allen sent in a correction to Section 8.4.
* Yvon Boulianne sent in a correction of a semantic error in Chapter 5.
¢ Fred Bremmer submitted a correction in Section 2.1.

» Jonah Cohen wrote the Perl scripts to convert the LaTeX source for this book into beautiful
HTML.

¢ Michael Conlon sent in a grammar correction in Chapter 2 and an improvement in style
in Chapter 1, and he initiated discussion on the technical aspects of interpreters.

¢ Benoit Girard sent in a correction to a humorous mistake in Section 5.6.

Courtney Gleason and Katherine Smith wrote horsebet.py, which was used as a case
study in an earlier version of the book. Their program can now be found on the website.

¢ Lee Harr submitted more corrections than we have room to list here, and indeed he should
be listed as one of the principal editors of the text.

¢ James Kaylin is a student using the text. He has submitted numerous corrections.
¢ David Kershaw fixed the broken catTwice function in Section 3.10.

¢ Eddie Lam has sent in numerous corrections to Chapters 1, 2, and 3. He also fixed the
Makefile so that it creates an index the first time it is run and helped us set up a versioning
scheme.

* Man-Yong Lee sent in a correction to the example code in Section 2.4.

* David Mayo pointed out that the word “unconsciously” in Chapter 1 needed to be changed
to “subconsciously”.

Chris McAloon sent in several corrections to Sections 3.9 and 3.10.

Chapter 0. Preface

Matthew J. Moelter has been a long-time contributor who sent in numerous corrections
and suggestions to the book.

Simon Dicon Montford reported a missing function definition and several typos in Chap-
ter 3. He also found errors in the increment function in Chapter 13.

John Ouzts corrected the definition of “return value” in Chapter 3.

Kevin Parks sent in valuable comments and suggestions as to how to improve the distri-
bution of the book.

David Pool sent in a typo in the glossary of Chapter 1, as well as kind words of encour-
agement.

Michael Schmitt sent in a correction to the chapter on files and exceptions.

Robin Shaw pointed out an error in Section 13.1, where the printTime function was used
in an example without being defined.

Paul Sleigh found an error in Chapter 7 and a bug in Jonah Cohen’s Perl script that gen-
erates HTML from LaTeX.

Craig T. Snydal is testing the text in a course at Drew University. He has contributed
several valuable suggestions and corrections.

Ian Thomas and his students are using the text in a programming course. They are the
first ones to test the chapters in the latter half of the book, and they have made numerous
corrections and suggestions.

Keith Verheyden sent in a correction in Chapter 3.
Peter Winstanley let us know about a longstanding error in our Latin in Chapter 3.
Chris Wrobel made corrections to the code in the chapter on file I/O and exceptions.

Moshe Zadka has made invaluable contributions to this project. In addition to writing
the first draft of the chapter on Dictionaries, he provided continual guidance in the early
stages of the book.

Christoph Zwerschke sent several corrections and pedagogic suggestions, and explained
the difference between gleich and selbe.

James Mayer sent us a whole slew of spelling and typographical errors, including two in
the contributor list.

Hayden McAfee caught a potentially confusing inconsistency between two examples.

Angel Arnal is part of an international team of translators working on the Spanish version
of the text. He has also found several errors in the English version.

Tauhidul Hoque and Lex Berezhny created the illustrations in Chapter 1 and improved
many of the other illustrations.

Dr. Michele Alzetta caught an error in Chapter 8 and sent some interesting pedagogic
comments and suggestions about Fibonacci and Old Maid.

Andy Mitchell caught a typo in Chapter 1 and a broken example in Chapter 2.
Kalin Harvey suggested a clarification in Chapter 7 and caught some typos.

Christopher P. Smith caught several typos and is helping us prepare to update the book
for Python 2.2.

David Hutchins caught a typo in the Foreword.

xi

Gregor Lingl is teaching Python at a high school in Vienna, Austria. He is working on a
German translation of the book, and he caught a couple of bad errors in Chapter 5.

Julie Peters caught a typo in the Preface.

Florin Oprina sent in an improvement in makeTime, a correction in printTime, and a
nice typo.

D. J. Webre suggested a clarification in Chapter 3.

Ken found a fistful of errors in Chapters 8, 9 and 11.

Ivo Wever caught a typo in Chapter 5 and suggested a clarification in Chapter 3.

Curtis Yanko suggested a clarification in Chapter 2.

Ben Logan sent in a number of typos and problems with translating the book into HTML.
Jason Armstrong saw the missing word in Chapter 2.

Louis Cordier noticed a spot in Chapter 16 where the code didn’t match the text.

Brian Cain suggested several clarifications in Chapters 2 and 3.

Rob Black sent in a passel of corrections, including some changes for Python 2.2.

Jean-Philippe Rey at Ecole Centrale Paris sent a number of patches, including some up-
dates for Python 2.2 and other thoughtful improvements.

Jason Mader at George Washington University made a number of useful suggestions and
corrections.

Jan Gundtofte-Bruun reminded us that “a error” is an error.

Abel David and Alexis Dinno reminded us that the plural of “matrix” is “matrices”, not
“matrixes”. This error was in the book for years, but two readers with the same initials
reported it on the same day. Weird.

Charles Thayer encouraged us to get rid of the semi-colons we had put at the ends of some
statements and to clean up our use of “argument” and “parameter”.

Roger Sperberg pointed out a twisted piece of logic in Chapter 3.
Sam Bull pointed out a confusing paragraph in Chapter 2.
Andrew Cheung pointed out two instances of “use before def.”

C. Corey Capel spotted the missing word in the Third Theorem of Debugging and a typo
in Chapter 4.

Alessandra helped clear up some Turtle confusion.

Wim Champagne found a brain-o in a dictionary example.
Douglas Wright pointed out a problem with floor division in arc.
Jared Spindor found some jetsom at the end of a sentence.

Lin Peiheng sent a number of very helpful suggestions.

Ray Hagtvedt sent in two errors and a not-quite-error.

Torsten Hiibsch pointed out an inconsistency in Swampy.

Inga Petuhhov corrected an example in Chapter 14.

Arne Babenhauserheide sent several helpful corrections.

Mark E. Casida is is good at spotting repeated words.

xii

Chapter 0. Preface

Scott Tyler filled in a that was missing. And then sent in a heap of corrections.
Gordon Shephard sent in several corrections, all in separate emails.

Andrew Turner spotted an error in Chapter 8.

Adam Hobart fixed a problem with floor division in arc.

Daryl Hammond and Sarah Zimmerman pointed out that I served up math.pi too early.
And Zim spotted a typo.

George Sass found a bug in a Debugging section.
Brian Bingham suggested Exercise 11.7.

Leah Engelbert-Fenton pointed out that I used tuple as a variable name, contrary to my
own advice. And then found a bunch of typos. And pointed out that I didn’t define “event
loop.”

Joe Funke spotted a typo.

Chao-chao Chen found an inconsistency in the Fibonacci example.

Contents

Preface

I Sequential Programming

1 The way of the program

2

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

The Python programming language
What is a program?
Algorithms oL
What is debugging?
Formal and natural languages

The first program

Variables, expressions and statements

2.1
22
23
24
2.5

Valuesandtypes.
Longintegers
Variables
Variable names and keywords

Statements

vii

wn W W

10
10
12

13
13
14
14
15
16

xiv Contents
2.6 Operatorsandoperands 17
2.7 Modulus operator 17
2.8 Expressions 18
2.9 Orderofoperations 19
2.10 Keyboardinput oo 19
211 Commentsol e e 20
212 Debugging 21
213 Glossaryo e e 22
2.14 EXeICiSesttt 23
3 Functions 25
3.1 Functioncalls 25
3.2 Typeconversion functions 26
33 Mathfunctions 26
34 Composition 27
3.5 Debugging 28
3.6 Glossary 28
37 EXercises 29
4 Strings 31
4.1 AStringiSasequUence oo e eu e 31
4.2 len . . . e 32
4.3 String operationso 32
4.4 String slices 33
4.5 Strings are immutableo 34
4.6 stringmethods 34
47 Glossary oL e 35
4.8 EXErcises i 36

Contents XV
II Decisions, Detours and Data Structures 37
5 Conditionals 39
5.1 Booleanexpressions 39
5.2 Logicaloperators 40
5.3 Conditional execution 40
54 Alternative executiono 41
5.5 Chained conditionals 41
5.6 Nestedconditionals 42
5.7 String comparisono 42
5.8 Randomnumbers 43
59 Debugging 44
510 Glossary e 45
501 EXerciseso v it e 45
6 Fruitful functions 47
6.1 Adding new functions 47
6.2 Definitionsanduses Lo oL 48
6.3 Flowofexecution 49
6.4 Parameters and arguments oL 50
6.5 Variables and parameters are local 51
6.6 Stack diagrams 51
6.7 Fruitful functions and void functions 52
6.8 Why functions? 53
6.9 Returnvalues o 54
6.10 Booleanfunctions Lo 55
6.11 Incremental development 56
6.12 docstring 58
6.13 Composition e 59
6.14 Debugging 59
6.15 Glossary 60
6.16 Exercises e 61

Xvi Contents

7 Iteration 63
7.1 Multiple assignmento 63
7.2 Updating variables L. 64
7.3 The while statement 64
74 break 66
7.5 Square roots 66
7.6 Debugging 68
7.7 Glossary 70
7.8 Exercises 70
8 [Lists 73
8.1 Alistisasequence 73
82 Listsaremutable 74
83 Listoperations. 75
84 Listslices 76
8.5 Listmethods 76
8.6 Deletingelements 77
87 Objectsandvalues 78
88 Aliasing 79
89 Listarguments 80
8.10 Copyinglists 80
8.11 Listsandstrings 81
9 For Loops 83
9.1 Traversing astringo 83
9.2 Traversingalist 84
9.3 Afindfunction Lo oo 85
9.4 Loopingandcounting 85

9.5 The inoperator 86

Contents xvii
9.6 Map, filterandreduce 86
9.7 Debugging 88
9.8 Glossary o e 89
9.9 EXerCises 90
10 Files 91
10.1 Persistence. 91
10.2 Readingandwritingo 91
10.3 Formatoperator v v it 92
10.4 Filenamesandpaths 93
10.5 Catchingexceptionso oo vt e e 95
10.6 Databases e 96
10.7 Pickling e 97
108 Glossary o o 97
11 Dictionaries 99
11.1 Dictionary asasetof counters 100
11.2 Looping and dictionaries 102
11.3 Reverselookup 102
11.4 Dictionaries and lists 104
11.5 Debugging 105
11.6 Glossary o ot e 106
11.7 EXercises oo v v it i e 107
III Object-Oriented Programming 109
12 Classes and objects 111
12.1 User-defined types 111
122 Attributes 112

xviii

Contents

123 Rectangles
12.4 Instances as return values
12.5 Objectsaremutable
126 Copying oo
12,7 Debugging
128 Glossary
129 Exercises

13 Classes and functions

131 Time
13.2 Purefunctions
13.3 Modifiers o

13.4 Prototyping versus planning

135 Glossary

13.6 Exercises

14 Classes and methods

14.1 Object-oriented features
142 printtime
143 Anotherexample

14.4 A more complicated example

145 The initmethod
146 Thestrmethod
14.7 Operator overloading
14.8 Type-baseddispatch
149 Polymorphism
14.10 Exercises

1411 Glossary

Contents

Xix

15 Inheritance

15.1

15.2

15.3

15.4

15.5

15.6

15.7

15.8

15.9

15.10

Cardobjects

Class attributes e

Printingthedeck,
Add, remove, shuffleandsort
Inheritance L
Classdiagrams
Glossary

Exercises

IV Additional Topics

16 Recursion

16.1

16.2

16.3

16.4

16.5

16.6

16.7

16.8

16.9

16.10

16.11

Recursion
Stack diagrams for recursive functions
Infinite recursion oL o
More recursion e e
Leapoffaith.
Onemoreexample

Checking types

Debugging
Glossary e

Exercises

135
135
136
138
139
139
140
141
143
143

144

147

149

XX Contents

17 Tuples 161
17.1 Tuplesare immutable 161
17.2 Tupleassignment 162
173 Tuplesasreturnvalues 163
174 Listsandtuples 164
17.5 Dictionaries and tuples, 165
17.6 Sortingtuples 167
17.7 Sequencesofsequences 167
178 Glossary 168
17.9 EXercises 168

V Case Studies 169

18 Case study: interface design 171
18.1 TurtleWorld 171
18.2 Simplerepetition 172
183 Exercises 173
18.4 Encapsulation 174
18.5 Generalization 175
18.6 Imterfacedesign 176
187 Refactoring 176
18.8 Adevelopmentplan L oL 178
189 Glossary 178
18.10 Exercises 179

19 Case study: word play 181
19.1 Readingwordlists. oL 181
19.2 EXerciseso v i i e 182
193 Search 184
19.4 Looping withindices 185
19.5 Debugging 186

19.6 Glossaryo e e 187

Contents

xXxi

20 Case study: data structure selection

20.1 DSU . . . e
20.2 Word frequency analysis
20.3 Word histogram
204 Mostcommon wordsol
20.5 Optional arguments
20.6 Dictionary subtraction
207 Randomwords
20.8 Markovanalysis
209 Datastructureso e e
20.10 GIOSSary . . v v v v e e e e e e e e

21 Case study: Tkinter

211 Widgets
21.2 Buttonsandcallbacks 0oL,
21.3 Canvaswidgets
21.4 Coordinate SEqUENCEeS v ottt
21.5 Morewidgets
21.6 Packingwidgets
21.7 Menusand Callables
21.8 Binding
219 Glossary

VI Appendies

A Debugging

Al Syntax errorso e e e

A2 Runtimeerrors e

A3 SemantiCerrors e e e e

189
189
190
190
192
192
193
194
194
195
197

199
199
200
201
202
203
204
207
208
210

213

XXxii Contents

Part I

Sequential Programming

Chapter 1

The way of the program

The goal of this book is to teach you to think like a computer scientist. This way of
thinking combines some of the best features of mathematics, engineering, and natu-
ral science. Like mathematicians, computer scientists use formal languages to denote
ideas (specifically computations). Like engineers, they design things, assembling com-
ponents into systems and evaluating tradeoffs among alternatives. Like scientists, they
observe the behavior of complex systems, form hypotheses, and test predictions.

The single most important skill for a computer scientist is problem solving. Problem
solving means the ability to formulate problems, think creatively about solutions, and
express a solution clearly and accurately. As it turns out, the process of learning to
program is an excellent opportunity to practice problem-solving skills. That’s why this
chapter is called, “The way of the program.”

On one level, you will be learning to program, a useful skill by itself. On another level,
you will use programming as a means to an end. As we go along, that end will become
clearer.

1.1 The Python programming language

The programming language you will be learning is Python. Python is an example of a
high-level language; other high-level languages you might have heard of are C, C++,
Perl, and Java.

As you might infer from the name ‘“high-level language,” there are also low-level
languages, sometimes referred to as “machine languages” or “assembly languages.”
Loosely speaking, computers can only execute programs written in low-level lan-
guages. So programs written in a high-level language have to be processed before
they can run. This extra processing takes some time, which is a small disadvantage of
high-level languages.

4 Chapter 1. The way of the program

But the advantages are enormous. First, it is much easier to program in a high-level
language. Programs written in a high-level language take less time to write, they are
shorter and easier to read, and they are more likely to be correct. Second, high-level
languages are portable, meaning that they can run on different kinds of computers with
few or no modifications. Low-level programs can run on only one kind of computer
and have to be rewritten to run on another.

Due to these advantages, almost all programs are written in high-level languages. Low-
level languages are used only for a few specialized applications.

Two kinds of programs process high-level languages into low-level languages: inter-
preters and compilers. An interpreter reads a high-level program and executes it,
meaning that it does what the program says. It processes the program a little at a time,
alternately reading lines and performing computations.

%
SOURCE INTERPRETER OUTPUT

/o

A compiler reads the program and translates it completely before the program starts
running. In this case, the high-level program is called the source code, and the trans-
lated program is called the object code or the executable. Once a program is compiled,
you can execute it repeatedly without further translation.

SOURCE COMPILER OBJECT EXECUTOR OUTPUT
CODE _| coDE [

———O

Python is considered an interpreted language because Python programs are executed
by an interpreter. There are two ways to use the interpreter: interactive mode and script
mode. In interactive mode, you type Python programs and the interpreter prints the
result:

Python 2.4.1 (#1, Apr 29 2005, 00:28:56)

Type "help", "copyright", "credits" or "license" for more information.
>>> print 1 + 1

2

The first two lines in this example are displayed by the interpreter when it starts up.
The third line starts with >>>, which is the prompt the interpreter uses to indicate that
it is ready. If you type print 1 + 1, the interpreter replies 2.

Alternatively, you can store code in a file and use the interpreter to execute the contents
of the file. Such a file is called a script. For example, you could use a text editor to
create a file named dinsdale.py with the following contents:

1.2. What is a program? 5

print 1 + 1
By convention, Python scripts have names that end with . py.

To execute the script, you have to tell the interpreter the name of the file. In a UNIX
command window, you would type python dinsdale.py. In other development en-
vironments, the details of executing scripts are different.

Working in interactive mode is convenient for testing small pieces of code because you
can type and execute them immediately. But for anything more than a few lines, you
should save your code as a script so you can modify and execute it in the future.

1.2 What is a program?

A program is a sequence of instructions that specifies how to perform a computation.
The computation might be something mathematical, such as solving a system of equa-
tions or finding the roots of a polynomial, but it can also be a symbolic computation,
such as searching and replacing text in a document or (strangely enough) compiling a
program.

The details look different in different languages, but a few basic instructions appear in
just about every language:

input: Get data from the keyboard, a file, or some other device.
output: Display data on the screen or send data to a file or other device.
math: Perform basic mathematical operations like addition and multiplication.

conditional execution: Check for certain conditions and execute the appropriate se-
quence of statements.

repetition: Perform some action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program you’ve ever used,
no matter how complicated, is made up of instructions that look pretty much like these.
So you can think of programming as the process of breaking a large, complex task into
smaller and smaller subtasks until the subtasks are simple enough to be performed with
one of these basic instructions.

1.3 Algorithms

An algorithm is a mechanical process for solving a category of problems.

It is not easy to define an algorithm. It might help to start with something that is
not an algorithm. When you learned to multiply single-digit numbers, you probably

6 Chapter 1. The way of the program

memorized the multiplication table. In effect, you memorized 100 specific solutions.
That kind of knowledge is not algorithmic.

But if you were “lazy,” you probably cheated by learning a few tricks. For example,
to find the product of n and 9, you can write n — 1 as the first digit and 10 — n as the
second digit. This trick is a general solution for multiplying any single-digit number
by 9. That’s an algorithm!

Similarly, the techniques you learned for addition with carrying, subtraction with bor-
rowing, and long division are all algorithms. One of the characteristics of algorithms
is that they do not require any intelligence to carry out. They are mechanical processes
in which each step follows from the last according to a simple set of rules.

In my opinion, it is embarrassing that humans spend so much time in school learning
to execute algorithms that, quite literally, require no intelligence.

On the other hand, the process of designing algorithms is interesting, intellectually
challenging, and a central part of what we call programming.

Some of the things that people do naturally, without difficulty or conscious thought,
are the hardest to express algorithmically. Understanding natural language is a good
example. We all do it, but so far no one has been able to explain how we do it, at least
not in the form of an algorithm.

1.4 What is debugging?

Programming is error-prone. For whimsical reasons, programming errors are called
bugs and the process of tracking them down is called debugging.

Three kinds of errors can occur in a program: syntax errors, runtime errors, and seman-
tic errors. It is useful to distinguish between them in order to track them down more
quickly.

1.4.1 Syntax errors

Python can only execute a program if the syntax is correct; otherwise, the interpreter
displays an error message. Syntax refers to the structure of a program and the rules
about that structure. For example, in English, a sentence must begin with a capital
letter and end with a period. this sentence contains a syntax error. So does this one

For most readers, a few syntax errors are not a significant problem, which is why we
can read the poetry of e. e. cummings without spewing error messages. Python is not
so forgiving. If there is a single syntax error anywhere in your program, Python will
print an error message and quit, and you will not be able to run your program. During
the first few weeks of your programming career, you will probably spend a lot of time
tracking down syntax errors. As you gain experience, you will make fewer errors and
find them faster.

1.4. What is debugging? 7

1.4.2 Runtime errors

The second type of error is a runtime error, so called because the error does not appear
until after the program has started running. These errors are also called exceptions
because they usually indicate that something exceptional (and bad) has happened.

Runtime errors are rare in the simple programs you will see in the first few chapters, so
it might be a while before you encounter one.

1.4.3 Semantic errors

The third type of error is the semantic error. If there is a semantic error in your
program, it will run successfully, in the sense that the computer will not generate any
error messages, but it will not do the right thing. It will do something else. Specifically,
it will do what you told it to do.

The problem is that the program you wrote is not the program you wanted to write.
The meaning of the program (its semantics) is wrong. Identifying semantic errors can
be tricky because it requires you to work backward by looking at the output of the
program and trying to figure out what it is doing.

1.4.4 Experimental debugging

One of the most important skills you will acquire is debugging. Although it can be
frustrating, debugging is one of the most intellectually rich, challenging, and interesting
parts of programming.

In some ways, debugging is like detective work. You are confronted with clues, and
you have to infer the processes and events that led to the results you see.

Debugging is also like an experimental science. Once you have an idea about what is
going wrong, you modify your program and try again. If your hypothesis was correct,
then you can predict the result of the modification, and you take a step closer to a
working program. If your hypothesis was wrong, you have to come up with a new one.
As Sherlock Holmes pointed out, “When you have eliminated the impossible, whatever
remains, however improbable, must be the truth.” (A. Conan Doyle, The Sign of Four)

For some people, programming and debugging are the same thing. That is, program-
ming is the process of gradually debugging a program until it does what you want.
The idea is that you should start with a program that does something and make small
modifications, debugging them as you go, so that you always have a working program.

For example, Linux is an operating system that contains thousands of lines of code,
but it started out as a simple program Linus Torvalds used to explore the Intel 80386
chip. According to Larry Greenfield, “One of Linus’s earlier projects was a program
that would switch between printing AAAA and BBBB. This later evolved to Linux.”
(The Linux Users’ Guide Beta Version 1)

8 Chapter 1. The way of the program

Later chapters will make more suggestions about debugging and other programming
practices.

1.5 Formal and natural languages

Natural languages are the languages people speak, such as English, Spanish, and
French. They were not designed by people (although people try to impose some order
on them); they evolved naturally.

Formal languages are languages that are designed by people for specific applications.
For example, the notation that mathematicians use is a formal language that is partic-
ularly good at denoting relationships among numbers and symbols. Chemists use a
formal language to represent the chemical structure of molecules. And most impor-
tantly:

Programming languages are formal languages that have been de-
signed to express computations.

Formal languages tend to have strict rules about syntax. For example, 3+3 =61is a
syntactically correct mathematical statement, but 3+ = 3$6 is not. H,O is a syntacti-
cally correct chemical formula, but ,Zz is not.

Syntax rules come in two flavors, pertaining to tokens and structure. Tokens are the
basic elements of the language, such as words, numbers, and chemical elements. One
of the problems with 3+ = 3$6 is that $ is not a legal token in mathematics (at least
as far as I know). Similarly, »Zz is not legal because there is no element with the
abbreviation Zz.

The second type of syntax error pertains to the structure of a statement; that is, the way
the tokens are arranged. The statement 34+ = 3$6 is illegal because even though + and
= are legal tokens, you can’t have one right after the other. Similarly, in a chemical
formula the subscript comes after the element name, not before.

Exercise 1.1. Write a well-structured English sentence with invalid tokens in it. Then
write another sentence with all valid tokens but with invalid structure.

When you read a sentence in English or a statement in a formal language, you have to
figure out what the structure of the sentence is (although in a natural language you do
this subconsciously). This process is called parsing.

For example, when you hear the sentence, “The penny dropped,” you understand that
“the penny” is the subject and “dropped” is the predicate. Once you have parsed a
sentence, you can figure out what it means, or the semantics of the sentence. Assuming
that you know what a penny is and what it means to drop, you will understand the
general implication of this sentence.

Although formal and natural languages have many features in common—tokens, struc-
ture, syntax, and semantics —there are many differences:

1.6. The first program 9

ambiguity: Natural languages are full of ambiguity, which people deal with by using
contextual clues and other information. Formal languages are designed to be
nearly or completely unambiguous, which means that any statement has exactly
one meaning, regardless of context.

redundancy: In order to make up for ambiguity and reduce misunderstandings, nat-
ural languages employ lots of redundancy. As a result, they are often verbose.
Formal languages are less redundant and more concise.

literalness: Natural languages are full of idiom and metaphor. If I say, “The penny
dropped,” there is probably no penny and nothing dropping'. Formal languages
mean exactly what they say.

People who grow up speaking a natural language —everyone —often have a hard time
adjusting to formal languages. In some ways, the difference between formal and natural
language is like the difference between poetry and prose, but more so:

Poetry: Words are used for their sounds as well as for their meaning, and the whole
poem together creates an effect or emotional response. Ambiguity is not only
common but often deliberate.

Prose: The literal meaning of words is more important, and the structure contributes
more meaning. Prose is more amenable to analysis than poetry but still often
ambiguous.

Programs: The meaning of a computer program is unambiguous and literal, and can
be understood entirely by analysis of the tokens and structure.

Here are some suggestions for reading programs (and other formal languages). First,
remember that formal languages are much more dense than natural languages, so it
takes longer to read them. Also, the structure is very important, so it is usually not a
good idea to read from top to bottom, left to right. Instead, learn to parse the program
in your head, identifying the tokens and interpreting the structure. Finally, the details
matter. Small errors in spelling and punctuation, which you can get away with in
natural languages, can make a big difference in a formal language.

1.6 The first program

Traditionally, the first program you write in a new language is called “Hello, World!”
because all it does is display the words, “Hello, World!” In Python, it looks like this:

print 'Hello, World!'

This is an example of a print statement, which doesn’t actually print anything on
paper. It displays a value on the screen. In this case, the result is the words

IThis idiom means that someone realized something after a period of confusion.

10 Chapter 1. The way of the program

Hello, World!

The quotation marks in the program mark the beginning and end of the text to be
displayed; they don’t appear in the result.

Some people judge the quality of a programming language by the simplicity of the
“Hello, World!” program. By this standard, Python does about as well as possible.

1.7 Debugging

It is a good idea to read this book in front of a computer so you can try out the examples
as you go. You can run most of the examples in interactive mode, but if you put the
code into a script, it is easier to try out variations.

Whenever you are experimenting with a new feature, you should try to make mistakes.
For example, in the “Hello, world!” program, what happens if you leave out one of the
quotation marks? What if you leave out both? What if you spell print wrong?

This kind of experiment helps you remember what you read; it also helps with debug-
ging, because you get to know what the error messages mean. And that brings us to the
First Theorem of Debugging:

It is better to make mistakes now and on purpose than later and acciden-
tally.

Learning to debug can be frustrating, but it is one of the most important parts of think-
ing like a computer scientist. At the end of each chapter there is a debugging section,
like this one, with my thoughts (and theorems) of debugging. I hope they help!

1.8 Glossary

problem solving: The process of formulating a problem, finding a solution, and ex-
pressing the solution.

high-level language: A programming language like Python that is designed to be easy
for humans to read and write.

low-level language: A programming language that is designed to be easy for a com-
puter to execute; also called “machine language” or “assembly language.”

portability: A property of a program that can run on more than one kind of computer.

interpret: To execute a program in a high-level language by translating it one line at
a time.

compile: To translate a program written in a high-level language into a low-level lan-
guage all at once, in preparation for later execution.

1.8. Glossary 11

source code: A program in a high-level language before being compiled.
object code: The output of the compiler after it translates the program.
executable: Another name for object code that is ready to be executed.

prompt: Characters displayed by the interpreter to indicate that it is ready to take input
from the user.

script: A program stored in a file (usually one that will be interpreted).
program: A set of instructions that specifies a computation.
algorithm: A general process for solving a category of problems.
bug: An error in a program.

debugging: The process of finding and removing any of the three kinds of program-
ming errors.

syntax: The structure of a program.

syntax error: An error in a program that makes it impossible to parse (and therefore
impossible to interpret).

exception: An error that is detected while the program is running.
semantics: The meaning of a program.

semantic error: An error in a program that makes it do something other than what the
programmer intended.

natural language: Any one of the languages that people speak that evolved naturally.
formal language: Any one of the languages that people have designed for specific
purposes, such as representing mathematical ideas or computer programs; all

programming languages are formal languages.

token: One of the basic elements of the syntactic structure of a program, analogous to
a word in a natural language.

parse: To examine a program and analyze the syntactic structure.

print statement: An instruction that causes the Python interpreter to display a value
on the screen.

12 Chapter 1. The way of the program

1.9 Exercises

Exercise 1.2. Use a web browser to go to ht t p: / / pyt hon. or g. This page con-
tains a lot of information about Python, pointers to Python-related pages, and it gives
you the ability to search the Python documentation.

For example, if you enter print in the search window, the first link that appears is the
documentation of the print statement. At this point, not all of it will make sense to
you, but it is good to know where it is!

Exercise 1.3. Start the Python interpreter and type help () to start the online help util-
ity. Alternatively, you can type help('print’) to get information about a particular
topic, in this case the print statement. If this example doesn’t work, you may need to
install additional Python documentation or set an environment variable; unfortunately,
the details depend on your operating system and version of Python.

