
Chapter 10

Files

10.1 Persistence
Most of the programs we have seen so far are transient in the sense that they run for a
short time and produce some output, but when they end, their data disappears. If you
run the program again, it starts with a clean slate.

Other programs are persistent: they run for a long time (or all the time); they keep at
least some of their data in non-volatile storage (a hard drive, for example); and if they
shut down and restart, they pick up where they left off.

Examples of persistent programs are operating systems, which run pretty much when-
ever a computer is on, and web servers, which run all the time, waiting for requests to
come in on the network.

One of the simplest ways for programs to maintain their data is by reading and writing
text files. We have already seen programs that read text files; in this chapters we will
see programs that write them.

An alternative is to store the state of the program in a database. In this chapter I will
present a simple database and a module, pickle, that makes it easy to store program
data.

10.2 Reading and writing
A text file is a sequence of characters stored on a permanent medium like a hard drive,
flash memory, or CD-ROM. To read a file, you can use open to create a file object:

>>> fin = open('words.txt')
>>> print fin
<open file 'words.txt', mode 'r' at 0xb7eb2380>



94 Chapter 10. Files

Mode ’r’ means that this file is open for reading. The file object provides several
methods for reading data, including readline:

>>> line = fin.readline()
>>> print line
aa

The file object keeps track of where it is in the file, so if you invoke readline again,
it picks up from where it left off. You can also use a file object in a for loop, as we saw
in Section 19.1.

To write a file, you have to create a file object with mode ’w’ as a second parameter:

>>> fout = open('output.txt', 'w')
>>> print fout
<open file 'output.txt', mode 'w' at 0xb7eb2410>

If the file already exists, opening it in write mode clears out the old data and starts
fresh, so be careful! If the file doesn’t exist, a new one is created.

The write method puts data into the file.

>>> line1 = "This here's the wattle,\n"
>>> fout.write(line1)

Again, the file object keeps track of where it is, so if you call write again, it add the
new data to the end.

>>> line2 = "the emblem of our land.\n"
>>> fout.write(line2)

When you are done writing, you have to close the file.

>>> fout.close()

10.3 Format operator
The argument of write has to be a string, so if we want to put other values in a file, we
have to convert them to strings. The easiest way to do that is with str:

>>> x = 52
>>> f.write (str(x))

An alternative is to use the format operator, %. When applied to integers, % is the
modulus operator. But when the first operand is a string, % is the format operator.

The first operand is the format string, and the second operand is a tuple of expressions.
The result is a string that contains the values of the expressions, formatted according
to the format string.



10.4. Filenames and paths 95

As an example, the format sequence ’%d’ means that the first expression in the tuple
should be formatted as an integer (d stands for “decimal”):

>>> camels = 42
>>> '%d' % camels
'42'

The result is the string ’42’, which is not to be confused with the integer value 42.

A format sequence can appear anywhere in the format string, so you can embed a value
in a sentence:

>>> camels = 42
>>> 'I have spotted %d camels.' % camels
'I have spotted 42 camels.'

The format sequence ’%g’ formats the next element in the tuple as a floating-point
number (don’t ask why), and ’%s’ formats the next item as a string:

>>> 'In %d years I have spotted %g %s.' % (3, 0.1, 'camels')
'In 3 years I have spotted 0.1 camels.'

By default, the floating-point format prints six decimal places.

The number of elements in the tuple has to match the number of format sequences in
the string. Also, the types of the elements have to match the format sequences:

>>> '%d %d %d' % (1, 2)
TypeError: not enough arguments for format string
>>> '%d' % 'dollars'
TypeError: illegal argument type for built-in operation

In the first example, there aren’t enough elements; in the second, the element is the
wrong type.

You can specify the number of digits as part of the format sequence. For example,
the sequence ’%8.2f’ formats a floating-point number to be 8 characters long, with 2
digits after the decimal point:

>>> '%8.2f' % 3.14159
' 3.14'

The result takes up eight spaces with two digits after the decimal point.

10.4 Filenames and paths
Files are organized into directories (also called “folders”). Every running program has
a “current directory,” which is the default directory for most operations. For example,



96 Chapter 10. Files

when you create a new file with open, the new file goes in the current directory. And
when you open a file for reading, Python looks for it in the current directory.

The module os provides functions for working with files and directories (“os” stands
for “operating system”). os.getcwd returns the name of the current directory:

>>> import os
>>> cwd = os.getcwd()
>>> print cwd
/home/dinsdale

cwd stands for “current working directory.” The result in this example is
/home/dinsdale, which is the home directory of a user named dinsdale.

A string like cwd that identifies a file is called a path. A relative path starts from the
current directory; an absolute path starts from the topmost directory in the file system.

The paths we have seen so far are simple filenames, so they are relative to the current
directory. To find the absolute path to a file, you can use abspath, which is in the
module os.path.

>>> os.path.abspath('memo.txt')
'/home/dinsdale/memo.txt'

os.path.exists checks whether the file (or directory) specified by a path exists:

>>> os.path.exists('memo.txt')
True

If it exists, os.path.isdir checks whether it’s a directory:

>>> os.path.isdir('memo.txt')
False
>>> os.path.isdir('music')
True

Similarly, os.path.isfile checks whether it’s a file.

os.listdir returns a list of the files (and other directories) in the given directory:

>>> os.listdir(cwd)
['music', 'photos', 'memo.txt']

To demonstrate these functions, the following example “walks” through a directory,
prints the names of all the files, and calls itself recursively on all the directories.

def walk(dir):
for name in os.listdir(dir):

path = os.path.join(dir, name)



10.5. Catching exceptions 97

if os.path.isfile(path):
print path

else:
walk(path)

os.path.join takes a directory and a file name and joins them into a complete path.
Exercise 10.1. Modify walk so that instead of printing the names of the files, it returns
a list of names.

10.5 Catching exceptions
A lot of things can go wrong when you try to read and write files. If you try to open a
file that doesn’t exist, you get an IOError:

>>> fin = open('bad_file')
IOError: [Errno 2] No such file or directory: 'bad_file'

If you don’t have permission to access a file:

>>> fout = open('/etc/passwd', 'w')
IOError: [Errno 13] Permission denied: '/etc/passwd'

And if you try to open a directory for reading, you get

>>> fin = open('/home')
IOError: [Errno 21] Is a directory

To avoid these errors, you could use functions like os.path.exists and
os.path.isfile, but it would take a lot of time and code to check all the possibil-
ities (based on the last error message, there are at least 21 things that can go wrong).

It is better to go ahead and try, and deal with problems if they happen, which is exactly
what the try statement does. The syntax is similar to an if statement:

try:
fin = open('bad_file')
for line in fin:

print line
fin.close()

except:
print 'Something went wrong.'

Python starts by executing the try clause. If all goes well, it skips the except clause
and proceeds. If an exception occurs, it jumps out of the try clause and executes the
except clause.

Handling an exception with a try statement is called catching an exception. In this
example, the except clause prints an error message that is not very helpful. In general,



98 Chapter 10. Files

catching an exception gives you a chance to fix the problem, or try again, or at least
end the program gracefully.

10.6 Databases

A database is a file that is organized for storing data. Most databases are organized
like a dictionary in the sense that they map from keys to values. The biggest difference
is that the database is on disk (or other non-volatile storage), so it persists after the
program ends.

The module anydbm provides an interface for creating and updating database files. As
an example, I’ll create a database that contains captions for image files.

Opening a database is similar to opening other files:

>>> import anydbm
>>> db = anydbm.open('captions.db', 'c')

The mode ’c’ means that the database should be created if it doesn’t already exist.
The result is a database object that can be used (for most operations) like a dictionary.
If you create a new item, anydbm updates the database file.

>>> db['cleese.png'] = 'Photo of John Cleese.'

When you access one of the items, anydbm reads the file:

>>> print db['cleese.png']
Photo of John Cleese.

If you make another assignment to an existing key, anydbm replaces the old value:

>>> db['cleese.png'] = 'Photo of John Cleese doing a silly walk.'
>>> print db['cleese.png']
Photo of John Cleese doing a silly walk.

Many dictionary methods, like keys and items, also work with database objects. So
does iteration with a for statement.

for key in db:
print key

As with other files, you should close the database when you are done:

>>> db.close()



10.7. Pickling 99

10.7 Pickling
A limitation of anydbm is that the keys and values have to be strings. If you try to use
any other type, you get an error.

But the pickle module can help. It translates almost any type of object into a string,
suitable for storage in a database, and then translates strings back into objects.

pickle.dumps takes an object as a parameter and returns a string representation
(dumps is short for “dump string”):

>>> import pickle
>>> t = [1, 2, 3]
>>> pickle.dumps(t)
'(lp0\nI1\naI2\naI3\na.'

The format isn’t obvious to human readers; it is meant to be easy for pickle to inter-
pret. pickle.loads (“load string”) reconstitutes the object:

>>> t1 = [1, 2, 3]
>>> s = pickle.dumps(t1)
>>> t2 = pickle.loads(s)
>>> print t2
[1, 2, 3]

Although the new object has the same value as the old, it is not (in general) the same
object:

>>> t == t2
True
>>> t is t2
False

In other words, pickling and then unpickling has the same effect as copying the object.

You can use pickle to store non-strings in a database. In fact, this combination is so
common that it has been encapsulated in a module called shelve.
Exercise 10.2. If you did Exercise 17.3, modify your solution so that it creates a
database that maps from each word in the list to a list of words that use the same
set of letters.

Write a different program that opens the database and prints the contents in a human-
readable format.

10.8 Glossary
persistent: Pertaining to a program that runs indefinitely and keeps at least some of

its data in permanent storage.



100 Chapter 10. Files

format operator: An operator, %, that takes a format string and a tuple and generates a
string that includes the elements of the tuple formatted as specified by the format
string.

format string: A string, used with the format operator, that contains format se-
quences.

format sequence: A sequence of characters in a format string, like %d that specifies
how a value should be formatted.

text file: A sequence of characters stored in non-volatile storage like a hard drive.

directory: A named collection of files, also called a folder.

path: A string that identifies a file.

relative path: A path that starts from the current directory.

absolute path: A path that starts from the topmost directory in the file system.

catch: To prevent an exception from terminating a program using the try and except
statements.

database: A file whose contents are organized like a dictionary with keys that corre-
spond to values.


