Chapter 11

Dictionaries

A dictionary is like a list, but more general. In a list, the indices have to be integers;
in a dictionary they can be (almost) any type.

You can think of a dictionary as a mapping between a set of indices and a set of values.
Each index, which is called a key, corresponds to a value. The association of a key and
a value is called a key-value pair or sometimes an item.

As an example, we will build a dictionary that maps from English words to Spanish
words, so the keys and the values are all strings.

The function dict creates a new dictionary with no items.

>>> eng2sp = dict()
>>> print eng2sp

{}

The squiggly-brackets, {}, represent an empty dictionary. To add items to the dictio-
nary, you can use square brackets:

>>> eng2sp['one'] = 'uno'

This line creates an item that maps from the key "one’ to the value 'uno’. If we print
the dictionary again, we see a key-value pair with a colon between the key and value:

>>> print eng2sp
{'one': 'uno'}

This output format is also an input format. For example, you can create a new dictio-
nary with three items:

>>> eng2sp = {'one': 'uno', 'two': 'dos', 'three': 'tres'}

102 Chapter 11. Dictionaries

But if you print eng2sp, you might be surprised:

>>> print eng2sp
{'one': 'uno', 'three': 'tres', 'two': 'dos'}

The key-value pairs are not in order, but that’s not a problem because the elements of a
dictionary are never indexed with integer indices. Instead, you use the keys to look up
the corresponding values:

>>> print eng2sp['two']
"dos'

The key ’two’ always maps to the value ‘dos’ so the order of the items doesn’t matter.
If the key isn’t in the dictionary, you get an exception:

>>> print eng2sp['four']
KeyError: 'four'

The len function works on dictionaries; it returns the number of key-value pairs:

>>> len(eng2sp)
3

The in operator works on dictionaries; it tells you whether something appears as a key
in the dictionary (appearing as a value is not good enough).

>>> 'one' in eng2sp
True
>>> 'uno' in eng2sp
False

To see whether something appears as a value in a dictionary, you can use the method
values, which returns the values as a list, and then use the in operator:

>>> vals = eng2sp.values()
>>> 'uno' in vals
True

The in operator uses different algorithms for lists and dictionaries. For lists, it uses a
search algorithm, as in Section 9.3. As the list gets longer, the search time gets longer
in direct proportion. For dictionaries, Python uses an algorithm called a hashtable that
has a remarkable property: the in operator takes about the same amount of time no
matter how many items there are in a dictionary. I won’t explain how that’s possible,
but you can look it up.

11.1 Dictionary as a set of counters

Suppose you are given a string and you want to count how many times each letter
appears. There are several ways you could do it:

11.1. Dictionary as a set of counters 103

1. You could create 26 variables, one for each letter of the alphabet. Then you could
traverse the string and, for each character, increment the corresponding counter,
probably using a chained conditional.

2. You could create a list with 26 elements. Then you could convert each character
to a number (using the built-in function ord), use the number as an index into
the list, and increment the appropriate counter.

3. You could create a dictionary with characters as keys and counters as the corre-
sponding values. The first time you see a character, you would add an item to
the dictionary. After that you would increment the value of an existing item.

Each of these options performs the same computation, but each of them implements
that computation in a different way.

An implementation is a way of performing a computation; some implementations are
better than others. For example, an advantage of the dictionary implementation is that
we don’t have to know ahead of time which letters appear in the string and we only
have to make room for the letters that do appear.

Here is what the code might look like:

def histogram(s):
d = {}
for ¢ in s:
if ¢ not in d:
dic] =1
else:
dic] += 1
return d

The name of the function is histogram, which is a statistical term for a set of counters
(or frequencies).

The first line of the function creates an empty dictionary. The for loop traverses the
string. Each time through the loop, if the character c is not in the dictionary, we create
a new item with key c and the initial value 1 (since we have seen this letter once). If ¢
is already in the dictionary we increment d[c].

Here’s how it works:

>>> h = histogram('brontosaurus')
>>> print h
{'a': 1, 'b': 1, '0o': 2, 'n':1, 's': 2, 'r'+ 2, 'u': 2, 't': 1}

The histogram indicates that the letters ‘a’ and ‘b’ appear once each; ‘o’ appears
twice, and so on.

104 Chapter 11. Dictionaries

Exercise 11.1. Dictionaries have a method called get that takes a key and a default
value. If the key appears in the dictionary, get returns the corresponding value; other-
wise it returns the default value. For example:

>>> h = histogram('a')
>>> print h

{'a': 1}

>>> h.get('a', 0)

1

>>> h.get('b', 0)

0

Use get to write histogram more concisely. You should be able to eliminate the if
statement.

11.2 Looping and dictionaries

If you use a dictionary in a for statement, it traverses the keys of the dictionary. For
example, print_hist prints each key and the corresponding value:

def print hist(h):
for ¢ in h:
print c, h[c]

Here’s what the output looks like:

>>> h = histogram('parrot')
>>> print hist(h)
al

O ¢ K T

1
2
1
1

Again, the keys are in no particular order.
Exercise 11.2. Dictionaries have a method called keys that returns the keys of the
dictionary, in no particular order, as a list.

Modify print_hist to print the keys and their values in alphabetical order, using keys
and sort.

11.3 Reverse lookup

Given a dictionary d and a key k, it is easy to find the corresponding value v = d[k].
This operation is called a lookup.

11.3. Reverse lookup 105

But what if you have v and you want to find k? You have two problems: first, there
might be more than one key that maps to the value v. Depending on the application,
you might be able to pick one, or you might have to make a list that contains all of
them. Second, there is no simple syntax to do a reverse lookup; you have to search.

Here is a function that takes a value and returns the first key that maps to that value:

def reverse lookup(d, v):

for k in d:
if d[k] == v:
return k

raise ValueError

This function is yet another example of the search pattern we have seen before, but
it uses a feature we haven’t seen before, raise. The raise statement causes an ex-
ception; in this case it causes a ValueError, which generally indicates that there is
something wrong with the value of a parameter.

If we get to the end of the loop, that means v doesn’t appear in the dictionary as a value,
SO we raise an exception.

Here is an example of a successful reverse lookup:

>>> h = histogram('parrot')
>>> k = reverse lookup(h, 2)
>>> print k

r

And an unsuccessful one:

>>> k = reverse_lookup(h, 3)
Traceback (most recent call last):

File "<stdin>", line 1, in ?

File "<stdin>", line 5, in reverse lookup
ValueError

The result when you raise an exception is the same as when Python raises one: it prints
a traceback and an error message.

The raise statement takes a detailed error message as an optional argument. For
example:

>>> raise ValueError, 'value does not appear in the dictionary'
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: value does not appear in the dictionary

A reverse lookup is much slower than a forward lookup; if you have to do it often, or
if the dictionary gets big, the performance of your program will suffer.

Exercise 11.3. Modify reverse_lookup so that it builds and returns a list of all keys
that map to v, or an empty list if there are none.

106 Chapter 11. Dictionaries

114 Dictionaries and lists

Lists can appear as values in a dictionary. For example, if you were given a dictionary
that maps from letters to frequencies, you might want to invert it; that is, create a
dictionary that maps from frequencies to letters. Since there might be several letters
with the same frequency, each value in the inverted dictionary should be a list of letters.

Here is a function that inverts a dictionary:

def invert dict(d):

inv = {}
for key in d:
val = d[key]

if val not in inv:
inv[val] = [key]
else:
inv[val].append(key)
return inv

Each time through the loop, key gets a key from d and val gets the corresponding
value. If val is not in inv, that means we haven’t seen it before, so we create a new
item and initialize it with a singleton (a list that contains a single element). Otherwise
we have seen this value before, so we append the corresponding key to the list.

Here is an example:

>>> hist = histogram('parrot')

>>> print hist

{'a': 1, 'p'¢+ 1, 'r': 2, 't': 1, 'o': 1}
>>> inv = invert dict(hist)

>>> print inv

{t: {'a", 'p'y 't', '0"], 2: ['r']}

And here is a diagram showing hist and inv:

dict dict list
hist—= ’'a’ — 1 inv —= 1 0——='a
!p! E 1 1 E 7p1
Ir! E 2 2 E 7t!
!t! E 1 3 E 701
!O! E 1
list

11.5. Debugging 107

A dictionary is represented as a box with the type dict above it and the key-value pairs
inside. If the values are integers, floats or strings, I usually draw them inside the box,
but I usually draw lists outside the box, just to keep the diagram simple.

Lists can be values in a dictionary, as this example shows, but they cannot be keys.
Here’s what happens if you try:

>>> t = [1, 2, 3]

>>>d = {}

>>> d[t] = 'oops'

Traceback (most recent call last):
File "<stdin>", line 1, in ?

TypeError: list objects are unhashable

I mentioned earlier that a dictionary is implemented using a hashtable and that means
that the keys have to be hashable.

A hash is a function that takes a value (of any kind) and returns an integer. Dictionaries
uses these integers, called hash values, to store and look up key-value pairs.

This system works fine if the keys are immutable. But if the keys are mutable, like lists,
bad things happen. For example, when you create a key-value pair, Python hashes the
key and stores it in the corresponding location. If you modify the key and then hash
it again, it would go to a different location. In that case you might have two entries
for the same key, or you might not be able to find a key. Either way, the dictionary
wouldn’t work correctly.

That’s why the keys have to be hashable, and why mutable types like lists aren’t. The
simplest way to get around this limitation is to use tuples, which we will see in the next
chapter.

Since dictionaries are mutable, they can’t be used as keys, but they can be used as
values.

Exercise 11.4. Read the documentation of the dictionary method setdefault and use
it to write a more concise version of invert_dict.

11.5 Debugging

As you work with bigger datasets it can become unwieldy to debug by printing and
checking data by hand. Here are some suggestions for debugging large datasets:

Scale down the input: If possible, reduce the size of the dataset. For example if the
program reads a text file, start with just the first 10 lines, or with the smallest
example you can find. You can either edit the files themselves, or (better) modify
the program so it reads only the first n lines.

If there is an error, you can reduce n to the smallest value that manifests the error,
and then increase it gradually as you find and correct errors.

108 Chapter 11. Dictionaries

Check summaries and types: Instead of printing and checking the entire dataset,
consider printing summaries of the data: for example, the number of items in
a dictionary or the total of a list of numbers.

A common cause of run-time errors is a value that is not the right type. For
debugging this kind of error, it is often enough to print the type of a value, which
is often smaller than the value itself.

Write self-checks: Sometimes you can write code to check for errors automatically.
For example, if you are computing the average of a list of number, you could
check that the result is not greater than the largest element in the list or less than
the smallest. This is called a “sanity check” because it detects results that are
“insane.”

Another kind of check compares the results of two different computations to see
if they are consistent. This is called a “consistency check.”

11.6 Glossary

dictionary: A mapping from a set of keys to their corresponding values.
key-value pair: The representation of the mapping from a key to a value.
item: Another name for a key-value pair.

key: An object that appears in a dictionary as the first part of a key-value pair.

value: An object that appears in a dictionary as the second part of a key-value pair.
This is more specific than our previous use of the word “value.”

implementation: A way of performing a computation.
hashtable: The algorithm used to implement Python dictionaries.
hash function: A function used by a hashtable to compute the location for a key.

hashable: A type that has a hash function. Immutable types like integers, floats and
strings are hashable; mutable types like lists and dictionaries are not.

lookup: A dictionary operation that takes a key and finds the corresponding value.

reverse lookup: A dictionary operation that takes a value and finds one or more keys
that map to it.

singleton: A list (or other sequence) with a single element.

call graph: A diagram that shows every frame created during the execution of a pro-
gram, with an arrow from each caller to each callee.

histogram: A set of counters.

11.7. Exercises 109

hint: A computed value stored to avoid unnecessary future computation.

global variable: A variable defined outside a function. Global variables can be ac-
cessed from any function.

11.7 Exercises

Exercise 11.5. Two words are anagrams if you can rearrange the letters from one to
spell the other. Write a function called is_anagram that takes two strings and returns
True if they are anagrams.

Exercise 11.6. Write a function named has_duplicates that takes a list as a param-
eter and that returns True if there is any object that appears more than once in the list,
and False otherwise.

Exercise 11.7. Write a function that takes the file name of a word list (see Section 19.1)
as a parameter and searches for all pairs of words that are rotations of each other. The
Junction rotate_word is described in Exercise 19.9.

