
Part III

Object-Oriented Programming

Chapter 12

Classes and objects

12.1 User-defined types
We have used many of Python’s built-in types; now we are going to define a new
type. As an example, we will create a type called Point that represents a point in
two-dimensional space.

In mathematical notation, points are often written in parentheses with a comma sepa-
rating the coordinates. For example, (0,0) represents the origin, and (x,y) represents
the point x units to the right and y units up from the origin.

There are several ways we might represent points in Python:

• We could store the coordinates separately in two variables, x and y.

• We could store the coordinates as elements in a list or tuple.

• We could create a new type to represent points as objects.

Creating a new type is (a little) more complicated than the other options, but it has
advantages that will be apparent soon.

A user-defined type is also called a class. A class definition looks like this:

class Point:
"""represents a point in 2-D space"""

This header indicates that the new class is called Point. The body is a docstring that
explains what the class is for. You can define variables and functions inside a class
definition, but we will get back to that later.

Defining a class named Point creates a class object, also named Point.

114 Chapter 12. Classes and objects

>>> print Point
__main__.Point
>>> type(Point)
<type 'classobj'>

Because Point is defined at the top level, its “full name” is main .Point.

The class object is like a factory for creating objects. To create a Point, you call Point
as if it were a function.

>>> blank = Point()
>>> print blank
<__main__.Point instance at 0xb7e9d3ac>

The return value is a reference to a Point object, which we assign to blank. Creating a
new object is called instantiation, and the object is an instance of the class.

12.2 Attributes
You can assign values to an instance using dot notation:

>>> blank.x = 3.0
>>> blank.y = 4.0

This syntax is similar to the syntax for selecting a variable from a module, such as
math.pi or string.uppercase. In this case, though, we are assigning values to
named elements of an object. These elements are called attributes.

As a noun, “AT-trib-ute” is pronounced with emphasis on the first syllable, as opposed
to “a-TRIB-ute,” which is a verb.

The following diagram shows the result of these assignments. A state diagram that
shows an object and its attributes is called an object diagram:

x

y

3.0

4.0

blank
Point

The variable blank refers to a Point object, which contains two attributes. Each at-
tribute refers to a floating-point number.

We can read the value of an attribute using the same syntax:

>>> print blank.y
4.0
>>> x = blank.x
>>> print x
3.0

12.3. Rectangles 115

The expression blank.x means, “Go to the object blank refers to and get the value
of x.” In this case, we assign that value to a variable named x. There is no conflict
between the variable x and the attribute x.

You can use dot notation as part of any expression. For example:

>>> print '(%g, %g)' % (blank.x, blank.y)
(3.0, 4.0)
>>> distance = math.sqrt(blank.x**2 + blank.y**2)
>>> print distance
5.0

You can pass an instance as an argument in the usual way. For example:

def print_point(p):
print '(%g, %g)' % (p.x, p.y)

print point takes a point as an argument and displays it in mathematical notation. To
invoke it, you can pass blank as an argument:

>>> print_point(blank)
(3.0, 4.0)

Inside the function, p is an alias for blank, so if the function modifies p, blank
changes.
Exercise 12.1. Write a function called distance that it takes two Points as arguments
and returns the distance between them.

12.3 Rectangles
Sometimes it is obvious what the attributes of an object should be, but other times you
have to make decisions. For example, imagine you are designing a class to represent
rectangles. What attributes would you use to specify the location and size of a rectan-
gle? You can ignore angle; to keep things simple, assume that the rectangle is either
vertical or horizontal.

There are at least two possibilities:

• You could specify one corner of the rectangle (or the center), the width, and the
height.

• You could specify two opposing corners.

At this point it is hard to say whether either is better than the other, so we’ll implement
the first one, just as an example.

Here is the class definition:

116 Chapter 12. Classes and objects

class Rectangle:
"""represent a rectangle.

attributes: width, height, corner.
"""

The docstring lists the attribute names. width and height are numbers; corner is a
Point object that specifies the lower-left corner.

To represent a rectangle, you have to instantiate a Rectangle object and assign values
to the attributes:

box = Rectangle()
box.width = 100.0
box.height = 200.0
box.corner = Point()
box.corner.x = 0.0
box.corner.y = 0.0

The expression box.corner.x means, “Go to the object box refers to and select the
attribute named corner; then go to that object and select the attribute named x.”

The figure shows the state of this object:

y

0.0x

0.0

width

height

100.0

corner

200.0
Point

Rectangle

box

12.4 Instances as return values
Functions can return instances. For example, find center takes a Rectangle as
an argument and returns a Point that contains the coordinates of the center of the
Rectangle:

def find_center(box):
p = Point()
p.x = box.corner.x + box.width/2.0
p.y = box.corner.y + box.height/2.0
return p

Here is an example that passes box as an argument and assign the resulting Point to
center:

>>> center = find_center(box)
>>> print_point(center)
(50.0, 100.0)

12.5. Objects are mutable 117

12.5 Objects are mutable
We can change the state of an object by making an assignment to one of its attributes.
For example, to change the size of a rectangle without changing its position, you can
modify the values of width and height:

box.width = box.width + 50
box.height = box.width + 100

You can also write functions that modify objects. For example, grow rectangle takes
a Rectangle object and two numbers, dwidth and dheight, and adds the numbers to
the width and height of the rectangle:

def grow_rectangle(rect, dwidth, dheight) :
rect.width += dwidth
rect.height += dheight

Here is an example that demonstrates the effect:

>>> print box.width
100.0
>>> print box.height
200.0
>>> grow_rectangle(box, 50, 100)
>>> print box.width
150.0
>>> print box.height
300.0

Inside the function, rect is an alias for box, so if the function modifies rect, box
changes.
Exercise 12.2. Write a function named move rectangle that takes a Rectangle and
two numbers named dx and dy. It should change the location of the rectangle by adding
dx to the x coordinate of corner and adding dy to the y coordinate of corner.

12.6 Copying
Aliasing can make a program difficult to read because changes made in one place might
have unexpected effects in another place. It is hard to keep track of all the variables
that might refer to a given object.

Copying an object is often an alternative to aliasing. The copy module contains a
function called copy that can duplicate any object:

>>> p1 = Point()
>>> p1.x = 3.0
>>> p1.y = 4.0

118 Chapter 12. Classes and objects

>>> import copy
>>> p2 = copy.copy(p1)

p1 and p2 contain the same data, but they are not the same Point.

>>> print_point(p1)
(3.0, 4.0)
>>> print_point(p2)
(3.0, 4.0)
>>> p1 is p2
False
>>> p1 == p2
False

The is operator indicates that p1 and p2 are not the same object, which is what we
expected. But you might have expected == to yield True because these points contain
the same data. In that case, you will be disappointed to learn that for instances, the
default behavior of the == operator is the same as the is operator; it checks object
identity, not object equivalence.

This behavior can be changed, so for many objects defined in Python modules, the ==
operator checks equivalence (in whatever sense is appropriate). But the default is to
check identity.

If you use copy.copy to duplicate a Rectangle, you will find that it copies the Rectan-
gle object but not the embedded Point.

>>> box2 = copy.copy(box)
>>> box2 is box
False
>>> box2.corner is box.corner
True

Here is what the object diagram looks like:

y

0.0x

0.0

100.0

200.0

width

height

100.0

corner

200.0

width

height

corner

box box2

This operation is called a shallow copy because it copies the object and any references
it contains, but not the embedded objects.

For most applications, this is not what you want. In this example, invoking
grow rectangle on one of the Rectangles would not affect the other, but invoking

12.7. Debugging 119

move rectangle on either would affect both! This behavior is confusing and error-
prone.

Fortunately, the copy module contains a method named deepcopy that copies not only
the object but also the objects it refers to, and the objects they refer to, and so on. You
will not be surprised to learn that this operation is called a deep copy.

>>> box3 = copy.deepcopy(box)
>>> box3 is box
False
>>> box3.corner is box.corner
False

box3 and box are completely separate objects.
Exercise 12.3. Write a version move rectangle that it creates and returns a new
Rectangle instead of modifying the old one.

12.7 Debugging
When you start working with objects, you are likely to encounter some new exceptions.
If you try to access an attribute that doesn’t exist, you get an AttributeError:

>>> p = Point(3, 4)
>>> print p.z
AttributeError: Point instance has no attribute 'z'

If you are not sure what type an object is, you can ask:

>>> type(p)
<type 'instance'>

This result tells us that p is an object, but not what kind. But all objects have a special
attribute named class that refers to the object’s class.

>>> print p.__class__
__main__.Point

If you are not sure whether an object has a particular attribute, you can use the built-in
function hasattr:

>>> hasattr(p, 'x')
True
>>> hasattr(p, 'z')
False

The first argument can be any object; the second argument is a string that contains the
name of the attribute.

120 Chapter 12. Classes and objects

Another way to access the attributes of an object is through the special attribute
dict , which is a dictionary that maps from attribute names (as strings) and val-
ues:

>>> print p.__dict__
{'y': 4, 'x': 3}

For purposes of debugging, you might find it useful to keep this function handy:

def print_attributes(obj):
for attr in obj.__dict__:

print attr, getattr(obj, attr)

print attributes traverses the items in the object’s dictionary print each attrbute
name and its corresponding value.

The built-in function getattr takes an object and an attribute name (as a string) and
returns the attribute’s value.

12.8 Glossary
class: A user-defined type. A class definition creates a new class object.

class object: An object that contains information about a user-defined time. The class
object can be used to create instances of the type.

instance: An object that belongs to a class.

attribute: One of the named values associated with an object.

shallow copy: To copy the contents of an object, including any references to embed-
ded objects; implemented by the copy function in the copy module.

deep copy: To copy the contents of an object as well as any embedded objects, and any
objects embedded in them, and so on; implemented by the deepcopy function in
the copy module.

object diagram: A diagram that shows objects, their attributes, and the values of the
attributes.

12.9 Exercises

Chapter 13

Classes and functions

13.1 Time

As another example of a user-defined type, we’ll define a class called Time that records
the time of day. The class definition looks like this:

class Time:
"""represents the time of day

attributes: hour, minute, second"""

We can create a new Time object and assign attributes for hours, minutes, and seconds:

time = Time()
time.hour = 11
time.minute = 59
time.second = 30

The state diagram for the Time object looks like this:

59

30

hour

minute

second

11

Time

time

Exercise 13.1. Write a function print time that takes a Time object and prints it in
the form hour:minute:second.
Exercise 13.2. Write a boolean function after that takes two Time objects, t1 and
t2, and returns True if t1 follows t2 chronologically and False otherwise.

122 Chapter 13. Classes and functions

13.2 Pure functions
In the next few sections, we’ll write two versions of a function called add time, which
calculates the sum of two Time objects. They demonstrate two kinds of functions: pure
functions and modifiers. They also demonstrate a development plan I’ll call prototype
and patch, which is a way of tackling a complex problem by starting with a simple
prototype and incrementally dealing with the complications.

Here is a simple prototype of add time:

def add_time(t1, t2):
sum = Time()
sum.hour = t1.hour + t2.hour
sum.minute = t1.minute + t2.minute
sum.second = t1.second + t2.second
return sum

The function creates a new Time object, initializes its attributes, and returns a reference
to the new object. This is called a pure function because it does not modify any of the
objects passed to it as arguments and it has no side effects, such as displaying a value
or getting user input.

To test this function, I’ll create two Time objects: start contains the start time of a
movie, like Monty Python and the Holy Grail, and duration contains the run time of
the movie, which is one hour 35 minutes.

add time figures out when the movie will be done.

>>> start = Time()
>>> start.hour = 9
>>> start.minute = 45
>>> start.second = 0

>>> duration = Time()
>>> duration.hour = 1
>>> duration.minute = 35
>>> duration.second = 0

>>> done = add_time(start, duration)
>>> print_time(done)
10:80:00

The result, 10:80:00 might not be what you were hoping for. The problem is that this
function does not deal with cases where the number of seconds or minutes adds up
to more than sixty. When that happens, we have to “carry” the extra seconds into the
minute column or the extra minutes into the hour column.

Here’s an improved version:

13.3. Modifiers 123

def add_time(t1, t2):
sum = Time()
sum.hour = t1.hour + t2.hour
sum.minute = t1.minute + t2.minute
sum.second = t1.second + t2.second

if sum.second >= 60:
sum.second -= 60
sum.minute += 1

if sum.minute >= 60:
sum.minute -= 60
sum.hour += 1

return sum

Although this function is correct, it is starting to get big. We will see a shorter alterna-
tive later.

13.3 Modifiers
Sometimes it is useful for a function to modify the objects it gets as parameters. In
that case, the changes are visible to the caller. Functions that work this way are called
modifiers.

increment, which adds a given number of seconds to a Time object, can be written
naturally as a modifier. Here is a rough draft:

def increment(time, seconds):
time.second += seconds

if time.second >= 60:
time.second -= 60
time.minute += 1

if time.minute >= 60:
time.minute -= 60
time.hour += 1

The first line performs the basic operation; the remainder deals with the special cases
we saw before.

Is this function correct? What happens if the parameter seconds is much greater than
sixty? In that case, it is not enough to carry once; we have to keep doing it until
time.second is less than sixty. One solution is to replace the if statements with
while statements. That would make the function correct, but not very efficient.

124 Chapter 13. Classes and functions

Exercise 13.3. Write a correct version of increment that doesn’t contain any loops.

Anything that can be done with modifiers can also be done with pure functions. In
fact, some programming languages only allow pure functions. There is some evidence
that programs that use pure functions are faster to develop and less error-prone than
programs that use modifiers. But modifiers are convenient at times, and functional
programs tend to be less efficient.

In general, I recommend that you write pure functions whenever it is reasonable and
resort to modifiers only if there is a compelling advantage. This approach might be
called a functional programming style.
Exercise 13.4. Write a “pure” version of increment that creates and returns a new
Time object rather than modifying the parameter.

13.4 Prototyping versus planning
In this chapter, I demonstrated development plan called “prototype and patch.” For each
function, I wrote a rough draft that performed the basic calculation and then tested it,
correcting flaws along the way.

This approach can be effective, especially if you don’t yet have a deep understand-
ing of the problem. But incremental patching can generate code that is unnecessarily
complicated—since it deals with many special cases—and unreliable—since it is hard
to know if you have found all the errors.

An alternative is planned development, in which high-level insight into the problem
can make the programming much easier. In this case, the insight is that a Time object
is really a three-digit number in base 60! The second attribute is the “ones column,”
the minute attribute is the “sixties column,” and the hour attribute is the “thirty-six
hundreds column.”

When we wrote add time and increment, we were effectively doing addition in base
60, which is why we had to carry from one column to the next.

This observation suggests another approach to the whole problem—we can convert
Time objects to integers and take advantage of the fact that the computer knows how to
do integer arithmetic.

Here is the function that converts Times to integers:

def time_to_int(time):
minutes = time.hour * 60 + time.minute
seconds = minutes * 60 + time.second
return seconds

And here is the function that converts integers to Times (recall that divmod divides the
first argument by the second and returns the quotient and remainder as a tuple).

13.5. Glossary 125

def int_to_time(seconds):
time = Time()
minutes, time.second = divmod(seconds, 60)
time.hour, time.minute = divmod(minutes, 60)
return time

You might have to think a bit, and run some tests, to convince yourself that these func-
tions are correct. But once they are debugged, you can use them to rewrite add time:

def add_time(t1, t2):
seconds = time_to_int(t1) + time_to_int(t2)
return int_to_time(seconds)

This version is shorter than the original, and easier to verify.
Exercise 13.5. Rewrite increment using time to int and int to time.

In some ways, converting from base 60 to base 10 and back is harder than just dealing
with times. Base conversion is more abstract; our intuition for dealing with times is
better.

But if we have the insight to treat times as base 60 numbers and make the investment of
writing the conversion functions (time to int and int to time), we get a program
that is shorter, easier to read and debug, and more reliable.

It is also easier to add features later. For example, imagine subtracting two Times to
find the duration between them. The naı̈ve approach would be to implement subtraction
with borrowing. Using the conversion functions would be easier and more likely to be
correct.

Ironically, sometimes making a problem harder (or more general) makes it easier (be-
cause there are fewer special cases and fewer opportunities for error).

13.5 Glossary
prototype and patch: A development plan that involves writing a rough draft of a

program, testing, and correcting errors as they are found.

planned development: A development plan that involves high-level insight into the
problem and more planning than incremental development or prototype devel-
opment.

pure function: A function that does not modify any of the objects it receives as argu-
ments. Most pure functions are fruitful.

modifier: A function that changes one or more of the objects it receives as arguments.
Most modifiers are fruitless.

functional programming style: A style of program design in which the majority of
functions are pure.

126 Chapter 13. Classes and functions

13.6 Exercises
Exercise 13.6. Write a function called mul time that takes a Time object and a number
and returns a new Time object that contains the product of the original Time and the
number.

Then use mul time to write a function that takes a Time object that represents the
finishing time in a race, and a number that represents the distance, and returns a Time
object that represents the average pace (time per mile).

Chapter 14

Classes and methods

14.1 Object-oriented features
Python is an object-oriented programming language, which means that it provides
features that support object-oriented programming.

It is not easy to define object-oriented programming, but we have already seen some of
its characteristics:

• Programs are made up of object definitions and function definitions, and most of
the computation is expressed in terms of operations on objects.

• Each object definition corresponds to some object or concept in the real world,
and the functions that operate on that object correspond to the ways real-world
objects interact.

For example, the Time class defined in Chapter 13 corresponds to the way people record
the time of day, and the functions we defined correspond to the kinds of things people
do with times. Similarly, the Point and Rectangle classes correspond to the mathe-
matical concepts of a point and a rectangle.

So far, we have not taken advantage of the features Python provides to support object-
oriented programming. Strictly speaking, these features are not necessary. For the most
part, they provide an alternative syntax for things we have already done, but in many
cases, the alternative is more concise and more accurately conveys the structure of the
program.

For example, in the Time program, there is no obvious connection between the class
definition and the function definitions that follow. With some examination, it is appar-
ent that every function takes at least one Time object as an argument.

128 Chapter 14. Classes and methods

This observation is the motivation for methods; a method is a function that is asso-
ciated with a particular class. For example, we have seen methods for strings, lists,
dictionaries and tuples. In this chapter, we will define methods for user-defined types.

Methods are semantically the same as functions, but there are two syntactic differences:

• Methods are defined inside a class definition in order to make the relationship
between the class and the method explicit.

• The syntax for invoking a method is different from the syntax for calling a func-
tion.

In the next few sections, we will take the functions from the previous two chapters and
transform them into methods. This transformation is purely mechanical; you can do it
simply by following a sequence of steps. If you are comfortable converting from one
form to another, you will be able to choose the best form for whatever you are doing.

14.2 print time

In Chapter 13, we defined a class named Time and in Exercise 13.1, you wrote a func-
tion named print time:

class Time:
"""represents the time of day

attributes: hour, minute, second"""

def print_time(time):
print '%.2d:%.2d:%.2d' % (time.hour, time.minute, time.second)

To call this function, you have to pass a Time object as an argument:

>>> start = Time()
>>> start.hour = 9
>>> start.minute = 45
>>> start.second = 00
>>> print_time(start)
09:45:00

To make print time a method, all we have to do is move the function definition inside
the class definition. Notice the change in indentation.

class Time:
def print_time(time):

print '%.2d:%.2d:%.2d' % (time.hour, time.minute, time.second)

Now there are two ways to call print time. The first (and less common) way is to use
function syntax:

14.3. Another example 129

>>> Time.print_time(start)
09:45:00

In this use of dot notation, Time is the name of the class, and print time is the name
of the method. start is passed as a parameter.

The second (and more concise) way is to use method syntax:

>>> start.print_time()
09:45:00

In this use of dot notation, print time is the name of the method (again), and start
is the object the method is invoked on, which is called the subject. Just as the subject
of a sentence is what the sentence is about, the subject of a method invocation is what
the method is about.

Inside the method, the subject is assigned to the first parameter, so in this case start
is assigned to time.

By convention, the first parameter of a method is called self, so it would be more
common to write print time like this:

class Time:
def print_time(self):

print '%.2d:%.2d:%.2d' % (self.hour, self.minute, self.second)

The reason for this convention is convoluted, but it is based on a useful metaphor:

The syntax for a function call, print time(start), suggests that the function is the
active agent. It says something like, “Hey print time! Here’s an object for you to
print.”

In object-oriented programming, the objects are the active agents. A method invocation
like start.print time() says “Hey start! Please print yourself.”

This change in perspective might be more polite, but it is not obvious that it is useful. In
the examples we have seen so far, it may not be. But sometimes shifting responsibility
from the functions onto the objects makes it possible to write more versatile functions,
and makes it easier to maintain and reuse code.
Exercise 14.1. Rewrite time to int (from Section 13.4) as a method. It is probably
not appropriate to rewrite int to time as a method; it’s not clear what object you
would invoke it on!

14.3 Another example
Here’s a version of increment (from Section 13.3) rewritten as a method:

130 Chapter 14. Classes and methods

inside class Time:

def increment(self, seconds):
seconds += self.time_to_int()
return int_to_time(seconds)

This version assumes that time to int is written as a method, as in Exercise 14.1.
Also, note that it is a pure function, not a modifier.

Here’s how you would invoke increment:

>>> start.print_time()
09:45:00
>>> end = start.increment(1337)
>>> end.print_time()
10:07:17

The subject, start, gets assigned to the first parameter, self. The argument, 1337,
gets assigned to the second parameter, seconds.

This mechanism can be confusing, especially if you make an error. For example, if you
invoke increment with two arguments, you get:

>>> end = start.increment(1337, 460)
TypeError: increment() takes exactly 2 arguments (3 given)

The error message is initially confusing, because there are only two arguments in paren-
theses. But the subject is also considered an argument, so all together that’s three.

14.4 A more complicated example
after (from Exercise 13.2) is slightly more complicated because it takes two Time
objects as parameters. In this case it is conventional to name the first parameter self
and the second parameter other:

inside class Time:

def after(self, other):
return self.time_to_int() > other.time_to_int()

To use this method, you have to invoke it on one object and pass the other as an argu-
ment:

>>> end.after(start)
True

One nice thing about this syntax is that it has the same word order as English, subject-
verb-object.

14.5. The init method 131

14.5 The initmethod
The initmethod (short for “initialization”) is a special method that gets invoked when
an object is instantiated. Its full name is init (two underscore characters, followed
by init, and then two more underscores). An init method for the Time class might
look like this:

inside class Time:

def __init__(self, hour=0, minute=0, second=0):
self.hour = hour
self.minute = minute
self.second = second

It is common for the parameters of init to have the same names as the attributes.
The statement

self.hour = hour

stores the value of the parameter hour as an attribute in the new Time object self.

The parameters are optional, so if you call Time with no arguments, you get the default
values.

>>> time = Time()
>>> time.print_time()
00:00:00

If you provide one argument, it overrides hour:

>>> time = Time (9)
>>> time.print_time()
09:00:00

If you provide two arguments, they override hour and minute.

>>> time = Time(9, 45)
>>> time.print_time()
09:45:00

And if you provide three arguments, they override all three default values.
Exercise 14.2. Write an init method for the Point class that takes x and y as optional
parameters and assigns them to the corresponding attributes.

14.6 The strmethod
str is a special method name, like init , that is supposed to return a string
representation of an object.

132 Chapter 14. Classes and methods

For example, here is a str method for Time objects:

inside class Time:

def __str__(self):
return '%.2d:%.2d:%.2d' % (self.hour, self.minute, self.second)

When you print an object, Python invokes the str method:

>>> time = Time(9, 45)
>>> print time
09:45:00

When I write a new class, I almost always start by writing init , which makes it
easier to instantiate objects, and str , which is almost always useful for debugging.
Exercise 14.3. Write a str method for the Point class. Create a Point object and
print it.

14.7 Operator overloading
By defining other special methods, you can specify the behavior of operators on user-
defined types. For example, if you define an add method for the Time class, you can
use the + operator on Time objects.

Here is what the definition might look like:

inside class Time:

def __add__(self, other):
seconds = self.time_to_int() + other.time_to_int()
return int_to_time(seconds)

And here is how you could use it:

>>> start = Time(9, 45)
>>> duration = Time(1, 35)
>>> print start + duration
11:20:00

When you apply the + operator to Time objects, Python invokes add . When you
print the result, Python invokes str . So there is quite a lot happening behind the
scenes!

Changing the behavior of an operator so that it works with user-defined types is called
operator overloading. For every operator in Python there is a corresponding special
method, like add .
Exercise 14.4. Write an add method for the Point class.

14.8. Type-based dispatch 133

14.8 Type-based dispatch
In the previous section we added two Time objects, but you also might want to add an
integer to a Time object. The following is an alternative version of add that checks
the type of other and invokes either add time or increment:

inside class Time:

def __add__(self, other):
if isinstance(other, Time):

return self.add_time(other)
else:

return self.increment(other)

def add_time(self, other):
seconds = self.time_to_int() + other.time_to_int()
return int_to_time(seconds)

def increment(self, seconds):
seconds += self.time_to_int()
return int_to_time(seconds)

The built-in function isinstance takes a value and a class object, and returns True if
the value is an instance of the class.

If other is a Time object, add invokes add time. Otherwise it assumes that the
seconds parameter is a number and invokes increment. This operation is called a
type-based dispatch because it dispatches the computation to different methods based
on the type of the arguments.

Here are examples that use the + operator with different types:

>>> start = Time(9, 45)
>>> duration = Time(1, 35)
>>> print start + duration
11:20:00
>>> print start + 1337
10:07:17

Unfortunately, this implementation of addition is not commutative. If the integer is the
first operand, you get

>>> print 1337 + start
TypeError: unsupported operand type(s) for +: 'int' and 'instance'

The problem is, instead of asking the Time object to add an integer, Python is asking
an integer to add a Time object, and it doesn’t know how to do that. But there is a
clever solution for this problem, the radd method, which stands for “right-side add.”

134 Chapter 14. Classes and methods

This method is invoked when a Time object appears on the right side of the + operator.
Here’s the definition:

inside class Time:

def __radd__(self, other):
return self.__add__(other)

And here’s how it’s used:

>>> print 1337 + start
10:07:17
Exercise 14.5. Write an add method for Points that works with either a Point object or
a tuple:

• If the second operand is a Point, the method should return a new Point whose x
coordinate is the sum of the x coordinates of the operands, and likewise for the y
coordinates.

• If the second operand is a tuple, the method should add the first element of the
tuple to the x coordinate and the second element to the y coordinate, and return
a new Point with the result.

14.9 Polymorphism

Type-based dispatch is useful when it is necessary, but (fortunately) it is not always
necessary. Often you can avoid it by writing functions that work correctly for argu-
ments with different types.

Many of the functions we wrote for strings will actually work for any kind of sequence.
For example, in Section 11.1 we used histogram to count the number of times each
letter appears in a word.

def histogram(s):
d = {}
for c in s:

if c not in d:
d[c] = 1

else:
d[c] = d[c]+1

return d

This function also works for lists, tuples, and even dictionaries, as long as the elements
of s are hashable, so they can be used as keys in d.

14.10. Exercises 135

>>> t = ['spam', 'egg', 'spam', 'spam', 'bacon', 'spam']
>>> histogram(t)
{'bacon': 1, 'egg': 1, 'spam': 4}

Functions that can work with several types are called polymorphic.

Many of the built-in functions are polymorphic. For example, sum works with any kind
of sequence, as long as the elements support the addition operator.

>>> t = [1, 2.0, 42L]
>>> print sum(t)
45.0

Since Time objects provide an add method, they work with sum:

>>> t1 = Time(7, 43)
>>> t2 = Time(7, 41)
>>> t3 = Time(7, 37)
>>> total = sum([t1, t2, t3])
>>> print total
23:01:00

In general, if all of the operations inside a function work with a given type, then the
function works with that type.

The best kind of polymorphism is the unintentional kind, where you discover that a
function you have already written can be applied to a type you never planned for.

14.10 Exercises
Exercise 14.6. Write a definition for a class named Kangaroo with the following meth-
ods:

1. An init method that initializes an attribute named pouch contents to an
empty list.

2. A method named put in pouch that takes an object of any type and adds it to
pouch contents.

Test your code by creating two Kangaroo objects, assigning them to variables named
kanga and roo, and then adding roo to the contents of kanga’s pouch.

14.11 Glossary
object-oriented language: A language that provides features, such as user-defined

classes and inheritance, that facilitate object-oriented programming.

136 Chapter 14. Classes and methods

object-oriented programming: A style of programming in which data and the oper-
ations that manipulate it are organized into classes and methods.

method: A function that is defined inside a class definition and is invoked on instances
of that class.

subject: The object a method is invoked on.

operator overloading: Changing the behavior of an operator like + so it works with a
user-defined type.

type-based dispatch: A programming pattern that checks the type of an operand and
invokes different functions for different types.

polymorphic: Pertaining to a function that can work with more than one type.

