
Chapter 15

Inheritance

In this chapter we will develop classes to represent playing cards, decks of cards, and
poker hands. If you don’t play poker, don’t worry; I’ll tell you what you need to know
for the exercises.

But if you are not familiar with common playing cards, now would be a good time to
get a deck, or else this chapter might not make much sense.

15.1 Card objects

There are fifty-two cards in a deck, each of which belongs to one of four suits and one
of thirteen ranks. The suits are Spades, Hearts, Diamonds, and Clubs (in descending
order in bridge). The ranks are Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King.
Depending on the game that you are playing, an Ace may be higher than King or lower
than 2.

If we want to define a new object to represent a playing card, it is obvious what the
attributes should be: rank and suit. It is not as obvious what type the attributes
should be. One possibility is to use strings containing words like "Spade" for suits and
"Queen" for ranks. One problem with this implementation is that it would not be easy
to compare cards to see which had a higher rank or suit.

An alternative is to use integers to encode the ranks and suits. In this context, “encode”
means that we are going to define a mapping between numbers and suits, or between
numbers and ranks. This kind of encoding is not meant to be a secret (that would be
“encryption”).

For example, this table shows the suits and the corresponding integer codes:

138 Chapter 15. Inheritance

Spades !→ 3
Hearts !→ 2
Diamonds !→ 1
Clubs !→ 0

This code makes it easy to compare cards; because higher suits map to higher numbers,
we can compare suits by comparing their codes.

The mapping for ranks is fairly obvious; each of the numerical ranks maps to the cor-
responding integer, and for face cards:

Jack !→ 11
Queen !→ 12
King !→ 13

I am using the !→ symbol to make is clear that these mappings are not part of the Python
program. They are part of the program design, but they don’t appear explicitly in the
code.

The class definition for Card looks like this:

class Card:
"""represents a standard playing card."""

def __init__(self, suit=0, rank=2):
self.suit = suit
self.rank = rank

As usual, the init method takes an optional parameter for each attribute. The default
card is the 2 of Clubs.

To create a Card, you call Card with the suit and rank of the card you want.

threeOfClubs = Card(3, 1)

In the next section we’ll figure out which card that is.

15.2 Class attributes
In order to print Card objects in a way that people can easily read, we need a mapping
from the integer codes to the corresponding ranks and suits. A natural way to do that
is with lists of strings. We assign these lists to class attributes:

inside class Card:

suit_names = ['Clubs', 'Diamonds', 'Hearts', 'Spades']
rank_names = [None, 'Ace', '2', '3', '4', '5', '6', '7',

15.2. Class attributes 139

'8', '9', '10', 'Jack', 'Queen', 'King']

def __str__(self):
return '%s of %s' % (Card.rank_names[self.rank],

Card.suit_names[self.suit])

Because suit names and rank names are defined outside of any method, they are class
attributes; that is, they are associated with the class Card rather than with a particular
Card instance.

Attributes like suit and rank are more precisely called instance attributes because
they are associated with a particular instance.

Both kinds of attribute are accessed using dot notation. For example, in str , self
is a Card object, and self.rank is its rank. Similarly, Card is a class object, and
Card.rank names is a list of strings associated with the class.

Every card has its own suit and rank, but there is only one copy of suit names and
rank names.

Finally, the expression Card.rank_names[self.rank]means “use the attribute rank
from the object self as an index into the list rank names from the class Card, and
select the appropriate string.”

The first element of rank names is None because there is no card with rank zero. By
including None as a place-keeper, we get a mapping with the nice property that the
index 2 maps to the string ’2’, and so on.

With the methods we have so far, we can create and print cards:

>>> card1 = Card(1, 11)
>>> print card1
Jack of Diamonds

Here is a diagram that shows the Card class object and one Card instance:

1

11

suit

rank

dict

card1

list

suit_names

list

rank_names

classobj

Card

140 Chapter 15. Inheritance

Card is a class object, so it has type classobj. card1 has type Card. (To save space,
I didn’t draw the contents of suit names and rank names).

15.3 Comparing cards
For built-in types, there are conditional operators (<, >, ==, etc.) that compare values
and determine when one is greater than, less than, or equal to another. For user-defined
types, we can override the behavior of the built-in operators by providing a method
named cmp .

The cmp method takes two parameters, self and other, and returns a positive number
if the first object is greater, a negative number if the second object is greater, and 0 if
they are equal to each other.

The correct ordering for cards is not obvious. For example, which is better, the 3 of
Clubs or the 2 of Diamonds? One has a higher rank, but the other has a higher suit. In
order to compare cards, you have to decide whether rank or suit is more important.

The answer might depend on what game you are playing, but to keep things simple,
we’ll make the arbitrary choice that suit is more important, so all of the Spades outrank
all of the Diamonds, and so on.

With that decided, we can write cmp :

inside class Card:

def __cmp__(self, other):
check the suits
if self.suit > other.suit: return 1
if self.suit < other.suit: return -1

suits are the same... check ranks
if self.rank > other.rank: return 1
if self.rank < other.rank: return -1

ranks are the same... it's a tie
return 0

You can write this more concisely using tuple comparison:

inside class Card:

def __cmp__(self, other):
t1 = self.suit, self.rank
t2 = other.suit, other.rank
return cmp(t1, t2)

15.4. Decks 141

The built-in function cmp has the same interface as the method cmp : it takes two
values and returns a positive number if the first is larger, a negative number of the
second is larger, and 0 if they are equal.
Exercise 15.1. Write a cmp method for Time objects. Hint: you can use tuple
comparison, but you also might consider using integer subtraction.

15.4 Decks
Now that we have Card objects, the next step is to define a class to represent decks.
Since a deck is made up of cards, a natural choice is for each Deck object to contain a
list of cards as an attribute.

The following is a class definition for Deck. The init method creates the attribute
cards and generates the standard set of fifty-two cards:

class Deck:

def __init__(self):
self.cards = []
for suit in range(4):

for rank in range(1, 14):
card = Card(suit, rank)
self.cards.append(card)

The easiest way to populate the deck is with a nested loop. The outer loop enumerates
the suits from 0 to 3. The inner loop enumerates the ranks from 1 to 13. Each iteration
of the inner loop creates a new Card with the current suit and rank, and appends it to
self.cards.

15.5 Printing the deck
Here is a str method for Deck:

#inside class Deck:

def __str__(self):
res = []
for card in self.cards:

res.append(str(card))
return '\n'.join(res)

This method demonstrates an efficient way to accumulate a large string, by building
a list of strings and then using join. The built-in function str invokes the str
method on each card and returns the string representation.

142 Chapter 15. Inheritance

Since we invoke join on a newline character, the cards are separated by newlines.
Here’s what the result looks like:

>>> deck = Deck()
>>> print deck
Ace of Clubs
2 of Clubs
3 of Clubs
...
10 of Spades
Jack of Spades
Queen of Spades
King of Spades

Even though the result appears on 52 lines, it is one long string that contains newlines.

15.6 Add, remove, shuffle and sort

To deal cards, we would like a method that removes a card from the deck and returns
it. The list method pop provides a convenient way to do that:

#inside class Deck:

def pop_card(self):
return self.cards.pop()

Since pop removes the last card in the list, we are in effect dealing from the bottom of
the deck.

To add a card, we can use the list method append:

#inside class Deck:

def add_card(self, card):
self.cards.append(card)

A method like this that uses another function without doing much real work is some-
times called a veneer. The metaphor comes from woodworking, where it is common
to glue a thin layer of good quality wood to the surface of a cheaper piece of wood.

In this case we are defining a “thin” method that expresses a list operation in terms that
are appropriate for decks.

As another example, we can write a Deck method named shuffle using the function
shuffle from the random module:

15.7. Inheritance 143

inside class Deck:

def shuffle(self):
random.shuffle(self.cards)

Don’t forget to import random.
Exercise 15.2. Write a Deck method named sort that uses the list method sort to sort
the cards in a Deck. sort uses the cmp method we defined to determine sort order.

15.7 Inheritance
The language feature most often associated with object-oriented programming is in-
heritance. Inheritance is the ability to define a new class that is a modified version of
an existing class.

It is called “inheritance” because the new class inherits the methods of the existing
class. Extending this metaphor, the existing class is called the parent class and the
new class is called the child.

As an example, let’s say we want a class to represent a “hand,” that is, the set of cards
held by one player. A hand is similar to a deck: both are made up of a set of cards, and
both require operations like adding and removing cards.

A hand is also different from a deck; there are operations we want for hands that don’t
make sense for a deck. For example, in poker we might compare two hands to see
which one wins. In bridge, we might compute a score for a hand in order to make a
bid.

This relationship between classes—similar, but different—lends itself to inheritance.

The definition of a child class is like other class definitions, but the name of the parent
class appears in parentheses:

class Hand(Deck):
"""represents a hand of playing cards"""

This definition indicates that Hand inherits from Deck; that means we can use methods
like pop card and add card for Hands as well as Decks.

Hand also inherits the init method from Deck, but it doesn’t really do what we want:
instead of populating the hand with 52 new cards, the init method for Hands should
initialize cards with an empty list.

If we provide an init method in the Hand class, it overrides the one in the Deck class:

inside class Hand:

def __init__(self, label=''):

144 Chapter 15. Inheritance

self.cards = []
self.label = label

So when you create a Hand, Python invokes this init method:

>>> hand = Hand('new hand')
>>> print hand.cards
[]
>>> print hand.label
new hand

But the other methods are inherited from Deck, so we can use pop card and add card
to deal a card:

>>> deck = Deck()
>>> card = deck.pop_card()
>>> hand.add_card(card)
>>> print hand
King of Spades

The next natural step is to encapsulate this code in a method called move cards:

#inside class Deck:

def move_cards(self, hand, num):
for i in range(num):

hand.add_card(self.pop_card())

move cards takes two arguments, a Hand object and the number of cards to deal. It
modifies both self and hand, and returns None.

In some games, cards are moved from one hand to another, or from a hand back to the
deck. You can use move cards for any of these operations: self can be either a Deck
or a Hand, and hand, despite the name, can also be a Deck.
Exercise 15.3. Write a Deck method called deal hands that takes two parameters,
the number of hands and the number of cards per hand, and that creates new Hand
objects, deals the appropriate number of cards per hand, and returns a list of Hand
objects.

Inheritance is a useful feature. Some programs that would be repetitive without in-
heritance can be written more elegantly with it. Inheritance can facilitate code reuse,
since you can customize the behavior of parent classes without having to modify them.
In some cases, the inheritance structure reflects the natural structure of the problem,
which makes the program easier to understand.

On the other hand, inheritance can make programs difficult to read. When a method is
invoked, it is sometimes not clear where to find its definition. The relevant code may
be scattered among several modules. Also, many of the things that can be done using
inheritance can be done as well or better without it.

15.8. Class diagrams 145

15.8 Class diagrams
So far we have seen stack diagrams, which show the state of a program, and object
diagrams, which show the attributes of an object and their values. These diagrams
represent a snapshot in the execution of a program, so they change as the program
runs.

They are also highly detailed, and for some applications, too detailed. A class diagrams
is a more abstract representation of the structure of a program. Instead of showing
individual objects, it shows classes and the relationships between them.

There are several kinds of relationship between classes:

• Objects in one class might contain references to objects in another class. For
example, each Rectangle contains a reference to a Point, and each Deck contains
references to many Cards. This kind of relationship is called HAS-A, as in, “a
Rectangle has a Point.”

• One class might inherit from another. This relationship is called IS-A, as in, “a
Hand is a kind of a Deck.”

• Once class might depend on another in the sense that changes in one class would
require changes in the other.

A class diagram is a graphical representation of these relationships between classes.
For example, this diagram shows the relationships between Card, Deck and Hand.

Hand

Deck * Card

The arrow with a hollow triangle head represents an IS-A relationship; in this case it
indicates that Hand inherits from Deck.

The standard arrow head represents a HAS-A relationshop; in this case a Deck has
references to Card objects.

The star (*) near the arrow head is amultiplicity; it indicates how many Cards a Deck
has. A multiplicity can be a simple number, like 52, a range, like 5..7 or a star, which
indicates that a Deck can have any number of Cards.

15.9 Glossary
encode: To represent one set of values using another set of values by constructing a

mapping between them.

146 Chapter 15. Inheritance

class attribute: An attribute associated with a class object. Class attributes are defined
inside a class definition but outside any method.

instance attribute: An attribute associated with an instance of a class.

veneer: A method or function that provides a different interface to another function
without doing much computation.

inheritance: The ability to define a new class that is a modified version of a previously
defined class.

parent class: The class from which a child class inherits.

child class: A new class created by inheriting from an existing class; also called a
“subclass.”

IS-A relationship: The relationship between a child class and its parent class.

HAS-A relationship: The relationship between two classes where instances of one
class contain references to instances of the other.

class diagram: A diagram that shows the classes in a program and the relationships
between them.

multiplicity: A notation in a class diagram that shows, for a HAS-A relationship, how
many references there are to instances of another class.

15.10 Exercises
The following are the possible hands in poker, in increasing order of value (and de-
creasing order of probability):

pair: two cards with the same rank
two pair: two pairs of cards with the same rank
three of a kind: three cards with the same rank
straight: five cards with ranks in sequence (aces can be high or low, so Ace-2-3-4-5

is a straight and so is 10-Jack-Queen-King-Ace, but Queen-King-Ace-2-3 is
not.)

flush: five cards with the same suit
full house: three cards with one rank, two cards with another
four of a kind: four cards with the same rank
straight flush: five cards in sequence (as defined above) and with the same suit

The goal of these exercises is to estimate the probability of drawing these various
hands.

15.10. Exercises 147

1. Download the following files from thinkpython.com/code:
Card.py : A complete version of the Card, Deck and Hand classes in this chap-

ter.
PokerHand.py : An incomplete implementation of a class that represents a

poker hand, and some code that tests it.

2. If you run PokerHand.py, it deals six 7-card poker hands and checks to see if
any of them contains a flush. Read this code carefully before you go on.

3. Add methods to PokerHand.py named has pair, has twopair, etc. that return
True or False according to whether or not the hand meets the relevant criteria.
Your code should work correctly for “hands” that contain any number of cards
(although 5 and 7 are the most common sizes).

4. Write a method named classify that figures out the highest-value classification
for a hand and sets the label attribute accordingly. For example, a 7-card hand
might contain a flush and a pair; it should be labeled “flush”.

5. When you are convinced that your classification methods are working, the next
step is to estimate the probablities of the various hands. Write a function in
PokerHand.py that shuffles a deck of cards, divides it into hands, classifies the
hands, and counts the number of times various classifications appear.

6. Print a table of the classifications and their probabilities. Run your program
with larger and larger numbers of hands until the output values converge to a
reasonable degree of accuracy.

