
Part IV

Additional Topics

Chapter 16

Recursion

16.1 Recursion
It is legal for one function to call another; it is also legal for a function to call itself.
It may not be obvious why that is a good thing, but it turns out to be one of the most
magical things a program can do. For example, look at the following function:

def countdown(n):
if n <= 0:

print 'Blastoff!'
else:

print n
countdown(n-1)

If n is 0 or negative, it outputs the word, “Blastoff!” Otherwise, it outputs n and then
calls a function named countdown—itself—passing n-1 as an argument.

What happens if we call this function like this?

>>> countdown(3)

The execution of countdown begins with n=3, and since n is greater than 0, it outputs
the value 3, and then calls itself...

The execution of countdown begins with n=2, and since n is greater than
0, it outputs the value 2, and then calls itself...

The execution of countdown begins with n=1, and since n is
greater than 0, it outputs the value 1, and then calls itself...

The execution of countdown begins with n=0, and
since n is not greater than 0, it outputs the word,
“Blastoff!” and then returns.

152 Chapter 16. Recursion

The countdown that got n=1 returns.

The countdown that got n=2 returns.

The countdown that got n=3 returns.

And then you’re back in main . So, the total output looks like this:

3
2
1
Blastoff!

A function that calls itself is recursive; the process is called recursion.

As another example, we can write a function that prints a string n times.

def print_n(s, n):
if n <= 0:

return
print s
print_n(s, n-1)

If n <= 0 the return statement exits the function. The flow of execution immediately
returns to the caller, and the remaining lines of the function are not executed.

The rest of the function is similar to countdown: if n is greater than 0, it displays s and
then calls itself to display s n−1 additional times. So the number of lines of output is
1 + (n - 1) which, if you do your algebra right, comes out to n.

For simple examples like this, it is probably easier to use a for loop. But we will see
examples later that are hard to write with a for loop and easy to write with recursion,
so it is good to start early.

16.2 Stack diagrams for recursive functions

In Section 6.6, we used a stack diagram to represent the state of a program during a
function call. The same kind of diagram can help interpret a recursive function.

Every time a function gets called, Python creates a new function frame, which contains
the function’s local variables and parameters. For a recursive function, there might be
more than one frame on the stack at the same time.

This figure shows a stack diagram for countdown called with n = 3:

16.3. Infinite recursion 153

__main__

countdown

countdown

countdown

countdown

n 3

n 2

n 1

n 0

As usual, the top of the stack is the frame for main . It is empty because we did not
create any variables in main or pass any arguments to it.

The four countdown frames have different values for the parameter n. The bottom of
the stack, where n=0, is called the base case. It does not make a recursive call, so there
are no more frames.

Draw a stack diagram for print n called with s = ’Hello’ and n=4.

16.3 Infinite recursion
If a recursion never reaches a base case, it goes on making recursive calls forever, and
the program never terminates. This is known as infinite recursion, and it is generally
not a good idea. Here is a minimal program with an infinite recursion:

def recurse():
recurse()

In most programming environments, a program with infinite recursion does not really
run forever. Python reports an error message when the maximum recursion depth is
reached:

File "<stdin>", line 2, in recurse
File "<stdin>", line 2, in recurse
File "<stdin>", line 2, in recurse

.

.

.
File "<stdin>", line 2, in recurse

RuntimeError: Maximum recursion depth exceeded

This traceback is a little bigger than the one we saw in the previous chapter. When the
error occurs, there are 1000 recurse frames on the stack!

154 Chapter 16. Recursion

16.4 More recursion
We have only covered a small subset of Python, but you might be interested to know
that this subset is a complete programming language, which means that anything that
can be computed can be expressed in this language. Any program ever written could
be rewritten using only the language features you have learned so far (actually, you
would need a few commands to control devices like the keyboard, mouse, disks, etc.,
but that’s all).

Proving that claim is a nontrivial exercise first accomplished by Alan Turing, one of
the first computer scientists (some would argue that he was a mathematician, but a lot
of early computer scientists started as mathematicians). Accordingly, it is known as
the Turing Thesis. If you take a course on the Theory of Computation, you will have a
chance to see the proof.

To give you an idea of what you can do with the tools you have learned so far, we’ll
evaluate a few recursively defined mathematical functions. A recursive definition is
similar to a circular definition, in the sense that the definition contains a reference to
the thing being defined. A truly circular definition is not very useful:

frabjuous: An adjective used to describe something that is frabjuous.

If you saw that definition in the dictionary, you might be annoyed. On the other hand,
if you looked up the definition of the factorial function, denoted with the symbol !, you
might get something like this:

0!= 1
n!= n(n−1)!

This definition says that the factorial of 0 is 1, and the factorial of any other value, n, is
n multiplied by the factorial of n−1.

So 3! is 3 times 2!, which is 2 times 1!, which is 1 times 0!. Putting it all together, 3!
equals 3 times 2 times 1 times 1, which is 6.

If you can write a recursive definition of something, you can usually write a Python
program to evaluate it. The first step is to decide what the parameters should be. In this
case it should be clear that factorial has a single parameter:

def factorial(n):

If the argument happens to be 0, all we have to do is return 1:

def factorial(n):
if n == 0:

return 1

Otherwise, and this is the interesting part, we have to make a recursive call to find the
factorial of n−1 and then multiply it by n:

16.4. More recursion 155

def factorial(n):
if n == 0:

return 1
else:

recurse = factorial(n-1)
result = n * recurse
return result

The flow of execution for this program is similar to the flow of countdown in Sec-
tion 16.1. If we call factorial with the value 3:

Since 3 is not 0, we take the second branch and calculate the factorial of n-1...

Since 2 is not 0, we take the second branch and calculate the factorial of
n-1...

Since 1 is not 0, we take the second branch and calculate the
factorial of n-1...

Since 0 is 0, we take the first branch and return 1 with-
out making any more recursive calls.

The return value (1) is multiplied by n, which is 1, and the result
is returned.

The return value (1) is multiplied by n, which is 2, and the result is re-
turned.

The return value (2) is multiplied by n, which is 3, and the result, 6, becomes the return
value of the function call that started the whole process.

Here is what the stack diagram looks like for this sequence of function calls:

n 3 recurse 2

recurse 1

recurse 1 1return

2return

6return

__main__

factorial

n 2

n 1

n 0

factorial

factorial

factorial
1

1

2

6

The return values are shown being passed back up the stack. In each frame, the return
value is the value of result, which is the product of n and recurse.

156 Chapter 16. Recursion

In the last frame, the local variables recurse and result do not exist, because the
branch that creates them did not execute.

16.5 Leap of faith
Following the flow of execution is one way to read programs, but it can quickly become
labyrinthine. An alternative is what I call the “leap of faith.” When you come to a
function call, instead of following the flow of execution, you assume that the function
works correctly and returns the right result.

In fact, you are already practicing this leap of faith when you use built-in functions.
When you call math.cos or math.exp, you don’t examine the bodies of those func-
tions. You just assume that they work because the people who wrote the built-in func-
tions were good programmers.

The same is true when you call one of your own functions. For example, in Sec-
tion 6.10, we wrote a function called is divisible that determines whether one num-
ber is divisible by another. Once we have convinced ourselves that this function is
correct—examining the code and testing—we can use the function without looking at
the code again.

The same is true of recursive programs. When you get to the recursive call, instead
of following the flow of execution, you should assume that the recursive call works
(yields the correct result) and then ask yourself, “Assuming that I can find the factorial
of n− 1, can I compute the factorial of n?” In this case, it is clear that you can, by
multiplying by n.

Of course, it’s a bit strange to assume that the function works correctly when you
haven’t finished writing it, but that’s why it’s called a leap of faith!

16.6 One more example
After factorial, the most common example of a recursively defined mathematical
function is fibonacci, which has the following definition:

fibonacci(0) = 0
fibonacci(1) = 1
fibonacci(n) = fibonacci(n−1)+fibonacci(n−2);

Translated into Python, it looks like this:

def fibonacci (n):
if n == 0:

return 0

16.7. Checking types 157

elif n == 1:
return 1

else:
return fibonacci(n-1) + fibonacci(n-2)

If you try to follow the flow of execution here, even for fairly small values of n, your
head explodes. But according to the leap of faith, if you assume that the two recursive
calls work correctly, then it is clear that you get the right result by adding them together.

16.7 Checking types
What happens if we call factorial and give it 1.5 as an argument?

>>> factorial(1.5)
RuntimeError: Maximum recursion depth exceeded

It looks like an infinite recursion. But how can that be? There is a base case—when n
== 0. But if n is not an integer, we can miss the base case and recurse forever.

In the first recursive call, the value of n is 0.5. In the next, it is -0.5. From there, it gets
smaller and smaller, but it will never be 0.

We have two choices. We can try to generalize the factorial function to work with
floating-point numbers, or we can make factorial check the type of its argument.
The first option is called the gamma function and it’s a little beyond the scope of this
book. So we’ll go for the second.

We can use the built-in function isinstance to verify the type of the argument. While
we’re at it, we can also make sure the argument is positive:

def factorial (n):
if not isinstance(n, int):

print 'Factorial is only defined for integers.'
return None

elif n < 0:
print 'Factorial is only defined for positive integers.'
return None

elif n == 0:
return 1

else:
return n * factorial(n-1)

Now we have three base cases. The first catches nonintegers and the second catches
negative integers. In both cases, the program prints an error message and returns None
to indicate that something went wrong:

158 Chapter 16. Recursion

>>> factorial('fred')
Factorial is only defined for integers.
None
>>> factorial(-2)
Factorial is only defined for positive integers.
None

If we get past both checks, then we know that n is a positive integer, and we can prove
that the recursion terminates.

This program demonstrates a pattern sometimes called a guardian. The first two con-
ditionals act as guardians, protecting the code that follows from values that might cause
an error. The guardians make it possible to prove the correctness of the code.

16.8 Hints
If you played with the fibonacci function from Section 16.6, you might have no-
ticed that the bigger the argument you provide, the longer the function takes to run.
Furthermore, the run time increases very quickly.

To understand why, consider this call graph for fibonacci with n=4:

fibonacci
n 4

fibonacci
n 3

fibonacci
n 2

fibonacci
n 0

fibonacci
n 1

fibonacci
n 1

fibonacci
n 2

fibonacci
n 0

fibonacci
n 1

A call graph shows a set function frames, with lines connecting each frame to the
frames of the functions it calls. At the top of the graph, fibonacci with n=4 calls
fibonacci with n=3 and n=2. In turn, fibonacci with n=3 calls fibonacci with n=2
and n=1. And so on.

Count how many times fibonacci(0) and fibonacci(1) are called. This is an inef-
ficient solution to the problem, and it gets worse as the argument gets bigger.

One solution is to keep track of values that have already been computed by storing
them in a dictionary. A previously computed value that is stored for later use is called
a hint. Here is an implementation of fibonacci using hints:

16.9. Debugging 159

previous = {0:0, 1:1}

def fibonacci(n):
if n in previous:

return previous[n]

res = fibonacci(n-1) + fibonacci(n-2)
previous[n] = res
return res

previous keeps track of the Fibonacci numbers we already know. We start with only
two items: 0 maps to 0 and 1 maps to 1.

Whenever fibonacci is called, it checks previous. If the result is already there, it can
return immediately. Otherwise it has to compute the new value, add it to the dictionary,
and return it.

previous is created outside the function, so it belongs to the special frame called
main . Variables in main are sometimes called global because they can be ac-
cessed from any function. Unlike local variables, which disappear when their function
ends, global variables persist from one function call to the next.

Using this version of fibonacci, you can compute fibonacci(40) in an eyeblink.
But if you compute fibonacci(50), you get:

>>> fibonacci(50)
12586269025L

The L at the end of the result indicates that the result is too big to fit into a Python
integer. Python converted it to a long integer.

16.9 Debugging
Breaking a large program into smaller functions creates natural checkpoints for debug-
ging. If a function is not working, there are three possibilities to consider:

• There is something wrong with the arguments the function is getting.

• There is something wrong with the function.

• There is something wrong with the return value or the way it is being used.

To rule out the first possibility, you can add a print statement at the beginning of the
function and display the values of the parameters (and maybe their types).

If the parameters look good, add a print statement before each return statement
that displays the return value. If possible, check the result by hand. If necessary,

160 Chapter 16. Recursion

call the function with special values where you know what the result should be (as in
Section 6.11).

If the function seems to be working, look at the function call to make sure the return
value is being used correctly (or used at all!).

Adding print statements at the beginning and end of a function can help make the flow
of execution more visible. For example, here is a version of factorial with print
statements:

def factorial(n):
space = ' ' * (4 * n)
print space, 'factorial', n
if n == 0:

print space, 'returning 1'
return 1

else:
recurse = factorial(n-1)
result = n * recurse
print space, 'returning', result
return result

space is a string of space characters that controls the indentation of the output. Here
is the result of factorial(5) :

factorial 5
factorial 4

factorial 3
factorial 2

factorial 1
factorial 0
returning 1

returning 1
returning 2

returning 6
returning 24

returning 120

If you are confused about the flow of execution, this kind of output can be helpful. It
takes some time to develop effective scaffolding, but according to the Fifth Theorem
of Debugging:

A little bit of scaffolding can save a lot of debugging.

16.10 Glossary
recursion: The process of calling the function that is currently executing.

16.11. Exercises 161

base case: A conditional branch in a recursive function that does not make a recursive
call.

infinite recursion: A function that calls itself recursively without ever reaching the
base case. Eventually, an infinite recursion causes a runtime error.

16.11 Exercises
Exercise 16.1. Draw a stack diagram for the following program. What does the pro-
gram print?
def b(z):

prod = a(z, z)
print z, prod
return prod

def a(x, y):
x = x + 1
return x * y

def c(x, y, z):
sum = x + y + z
pow = b(sum)**2
return pow

x = 1
y = x + 1
print c(x, y+3, x+y)
Exercise 16.2.

162 Chapter 16. Recursion

Chapter 17

Tuples

17.1 Tuples are immutable
A tuple is a sequence of values. The values can be any type, and they are indexed by
integers, so in that respect tuples are a lot like lists. The important difference is that
tuples are immutable.

Syntactically, a tuple is a comma-separated list of values:

>>> t = 'a', 'b', 'c', 'd', 'e'

Although it is not necessary, it is common to enclose tuples in parentheses:

>>> t = ('a', 'b', 'c', 'd', 'e')

To create a tuple with a single element, you have to include the final comma:

>>> t1 = ('a',)
>>> type(t1)
<type 'tuple'>

Without the comma, Python treats (’a’) as a string in parentheses:

>>> t2 = ('a')
>>> type(t2)
<type 'str'>

Another way to create a tuple is the built-in function tuple. With no argument, it
creates an empty tuple:

>>> t = tuple()
>>> print t
()

164 Chapter 17. Tuples

If the argument is a sequence (string, list or tuple), the result is a tuple with the elements
of the sequence:

>>> t = tuple('lupins')
>>> print t
('l', 'u', 'p', 'i', 'n', 's')

Since tuple is the name of a built-in function, you should avoid using it as a variable
name.

Most list operators also work on tuples. The bracket operator indexes an element:

>>> t = ('a', 'b', 'c', 'd', 'e')
>>> print t[0]
'a'

And the slice operator selects a range of elements.

>>> print t[1:3]
('b', 'c')

But if you try to modify one of the elements of the tuple, you get an error:

>>> t[0] = 'A'
TypeError: object doesn't support item assignment

You can’t modify the elements of a tuple, but you can replace one tuple with another:

>>> t = ('A',) + t[1:]
>>> print t
('A', 'b', 'c', 'd', 'e')

17.2 Tuple assignment
It is often useful to swap the values of two variables. With conventional assignments,
you have to use a temporary variable. For example, to swap a and b:

>>> temp = a
>>> a = b
>>> b = temp

This solution is cumbersome; tuple assignment is more elegant:

>>> a, b = b, a

The left side is a tuple of variables; the right side is a tuple of expressions. Each value
is assigned to its respective variable. All the expressions on the right side are evaluated
before any of the assignments.

17.3. Tuples as return values 165

The number of variables on the left and the number of values on the right have to be
the same:

>>> a, b = 1, 2, 3
ValueError: too many values to unpack

More generally, the right side can be any kind of sequence (string, list or tuple). For
example, to split an email address into a user name and a domain, you could write:

>>> addr = 'monty@python.org'
>>> uname, domain = addr.split('@')

The return value from split is a list with two elements; the first element is assigned
to uname, the second to domain.

>>> print uname
monty
>>> print domain
python.org

17.3 Tuples as return values
Strictly speaking, a function can only return one value, but if the value is a tuple, the
effect is the same as returning multiple values. For example, if you want to divide two
integers and compute the quotient and remainder, it is inefficient to compute x/y and
then x%y. It is better to compute them both at the same time.

The built-in function divmod takes two arguments and returns a tuple of two values,
the quotient and remainder. You can store the result as a tuple:

>>> t = divmod(7, 3)
>>> print t
(2, 1)

Or use tuple assignment to store the elements separately:

>>> quot, rem = divmod(7, 3)
>>> print quot
2
>>> print rem
1

Here is an example of a function that returns a tuple:

def min_max(t):
return min(t), max(t)

max and min are built-in functions that find the largest and smallest elements of a se-
quence. max min computes both and returns a tuple of two values.

166 Chapter 17. Tuples

17.4 Lists and tuples
zip is a built-in function that takes two or more sequences and “zips” them into a list
of tuples, where each tuple contains one element from each sequence.

This example zips a string and a list:

>>> s = 'abc'
>>> t = [0, 1, 2]
>>> zip(s, t)
[('a', 0), ('b', 1), ('c', 2)]

The result is a list of tuples where each tuple contains a character from the string and
the corresponding element from the list.

If the sequences are not the same length, the result gets the length of the shorter one.

>>> zip('Anne', 'Elk')
[('A', 'E'), ('n', 'l'), ('n', 'k')]

You can use tuple assignment to traverse a list of tuples:

t = [('a', 0), ('b', 1), ('c', 2)]
for letter, number in t:

print number, letter

Each time through the loop, Python selects the next tuple in the list and assigns the
elements to letter and number. The output of this loop is:

0 a
1 b
2 c

If you combine zip, for and tuple assignment, you get a standard idiom for traversing
two (or more) sequences at the same time. For example, has match takes two se-
quences, t1 and t2, and returns True if there is an index i such that t1[i] == t2[i]:

def has_match(t1, t2):
for x, y in zip(t1, t2):

if x == y:
return True

return False

If you need to traverse the elements of a sequence and their indices, you can use the
built-in function enumerate:

for index, element in enumerate('abc'):
print index, element

The output of this loop is:

17.5. Dictionaries and tuples 167

0 a
1 b
2 c

Again.

17.5 Dictionaries and tuples
Dictionaries have a method called items that returns a list of tuples, where each tuple
is a key-value pair.

>>> d = {'a':0, 'b':1, 'c':2}
>>> t = d.items()
>>> print t
[('a', 0), ('c', 2), ('b', 1)]

As you should expect from a dictionary, the items are in no particular order.

Conversely, you can use a list of tuples to initialize a new dictionary:

>>> t = [('a', 0), ('c', 2), ('b', 1)]
>>> d = dict(t)
>>> print d
{'a': 0, 'c': 2, 'b': 1}

Combining this feature with zip yields a concise way to create a dictionary:

>>> d = dict(zip('abc', range(3)))
>>> print d
{'a': 0, 'c': 2, 'b': 1}

The dictionary method update also takes a list of tuples and adds them, as key-value
pairs, to an existing dictionary.

Combining items, tuple assignment and for, you get the idiom for traversing the keys
and values of a dictionary:

for key, value in d.items():
print value, key

The output of this loop is:

0 a
2 c
1 b

Again.

168 Chapter 17. Tuples

It is common to use tuples as keys in dictionaries (primarily because you can’t use
lists). For example, a telephone directory might map from last-name, first-name pairs
to telephone numbers. Assuming that we have defined last, first and number, we
could write:

directory[last,first] = number

The expression in brackets is a tuple. We could use tuple assignment to traverse this
dictionary.

for last, first in directory:
print first, last, directory[last,first]

This loop traverses the keys in directory, which are tuples. It assigns the elements
of each tuple to last and first, then prints the name and corresponding telephone
number.

There are two ways to represent tuples in a state diagram. The more detailed version
shows the indices and elements just as they appear in a list. For example, the tuple
(’Cleese’, ’John’) would appear:

0

1

’Cleese’

’John’

tuple

But in a larger diagram you might want to leave out the details. For example, a diagram
of the telephone directory might appear:

(’Cleese’, ’John’) ’08700 100 222’

’08700 100 222’

’08700 100 222’

’08700 100 222’

’08700 100 222’

(’Chapman’, ’Graham’)

(’Idle’, ’Eric’)

(’Jones’, ’Terry’)

(’Gilliam’, ’Terry’)

(’Palin’, ’Michael’) ’08700 100 222’

dict

Here the tuples are shown using Python syntax as a graphical shorthand.

The telephone number in the diagram is the complaints line for the BBC, so please
don’t call it.

17.6. Sorting tuples 169

17.6 Sorting tuples
The comparison operators work with tuples and other sequences; Python starts by com-
paring the first element from each sequence. If they are equal, it goes on to the next
elements, and so on, until it finds elements that differ. Subsequent elements are not
considered (even if they are really big).

>>> (0, 1, 2) < (0, 3, 4)
True
>>> (0, 1, 2000000) < (0, 3, 4)
True

The sort function works the same way. It sorts primarily by first element, but in the
case of a tie, it sorts by second element, and so on. Here is an example that sorts and
prints the key-value pairs of a dictionary:

>>> d = {'a': 0, 'c': 2, 'b': 1}
>>> t = d.items()
>>> t.sort()
>>> print t
[('a', 0), ('b', 1), ('c', 2)]

To sort by value (rather than key), you can build a list of value-key pairs. One way to
do that is to traverse the dictionary items and append tuples onto a list:

def value_key_pairs(d):
res = []
for key, value in d.items():

res.append((value, key))
return res

The argument for append has two sets of parentheses: one because its an argument and
the other because it is a tuple.
Exercise 17.1. Draw a diagram that shows the final state of value key pairs with d
= {’a’: 0, ’c’: 2, ’b’: 1}.

17.7 Sequences of sequences
I have focused on lists of tuples, but almost all of the examples in this chapter also
work with lists of lists, tuples of tuples, and tuples of lists. To avoid enumerating the
possible combinations, it is sometimes easier to talk about sequences of sequences.

In many contexts, the different kinds of sequences (strings, lists and tuples) can be used
interchangeably. So how and why do you choose one over the others.

To start with the obvious, strings are more limited than other sequences because the
elements have to be characters. They are also immutable. If you need the ability to

170 Chapter 17. Tuples

change the characters in a string (as opposed to creating a new string), you might want
to use a list of characters instead.

Lists are more common than tuples, mostly because they are mutable. But there are a
few cases where you might prefer tuples:

• In some contexts, like a return statement, it is syntactically simpler to create a
tuple than a list.

• If you want to use a sequence as a dictionary key, you have to use an immutable
type like a tuple or string.

• If you are passing a sequence as an argument to a function, using tuples reduces
the potential for unexpected behavior due to aliasing.

Because tuples are immutable, they don’t provide methods like sort and reverse,
which modify existing lists. But Python provides the built-in functions sorted and
reversed, which take any sequence as a parameter and return a new list with the same
elements in a different order.

17.8 Glossary
tuple: An immutable sequence of elements.

tuple assignment: An assignment with a sequence on the right side and a tuple of
variables on the left. The right side is evaluated and then its elements are assigned
to the variables on the left.

17.9 Exercises
Exercise 17.2. Write a function called most frequent that takes a string and prints
the 3 most common letters in the string.
Exercise 17.3. Write a program that reads a word list from a file (see Section 19.1)
and prints all the sets of words that are anagrams.

Here is an example of what the output might look like:

['deltas', 'desalt', 'lasted', 'salted', 'slated', 'staled']
['retainers', 'ternaries']
['generating', 'greatening']
['resmelts', 'smelters', 'termless']

Hint: you might want to build a dictionary that maps from a set of letters to a list of
words that can be spelled with those letters. The question is, how can you represent the
set of letters in a way that can be used as a key?
Exercise 17.4. Modify the previous program so that it prints the largest set of anagrams
first, followed by the second largest set, and so on.

