
Chapter 2

Variables, expressions and
statements

2.1 Values and types

A value is one of the basic things a program works with, like a letter or a number. The
values we have seen so far are 1, 2, and ’Hello, World!’.

These values belong to different types: 2 is an integer, and ’Hello, World!’ is a
string, so-called because it contains a “string” of letters. You (and the interpreter) can
identify strings because they are enclosed in quotation marks.

The print statement also works for integers.

>>> print 4
4

If you are not sure what type a value has, the interpreter can tell you.

>>> type('Hello, World!')
<type 'str'>
>>> type(17)
<type 'int'>

Not surprisingly, strings belong to the type str and integers belong to the type int.
Less obviously, numbers with a decimal point belong to a type called float, because
these numbers are represented in a format called floating-point.

>>> type(3.2)
<type 'float'>



14 Chapter 2. Variables, expressions and statements

What about values like ’17’ and ’3.2’? They look like numbers, but they are in
quotation marks like strings.

>>> type('17')
<type 'str'>
>>> type('3.2')
<type 'str'>

They’re strings.

When you type a large integer, you might be tempted to use commas between groups
of three digits, as in 1,000,000. This is not a legal integer in Python, but it is legal:

>>> print 1,000,000
1 0 0

Well, that’s not what we expected at all! Python interprets 1,000,000 as a comma-
separated sequence of integers which it prints with spaces between.

This is the first example we have seen of a semantic error: the code runs without
producing an error message, but it doesn’t do the “right” thing.

2.2 Long integers
Python provides a type called long that can handle any size integer. One way to create
a long is to write an integer with a capital L at the end:

>>> type(1L)
<type 'long'>

Any time the result of a computation is too big to be represented with an integer, Python
converts the result as a long integer:

>>> 1000 * 1000
1000000
>>> 100000 * 100000
10000000000L

In the first case the result has type int; in the second case it is long.

2.3 Variables
One of the most powerful features of a programming language is the ability to manip-
ulate variables. A variable is a name that refers to a value.

The assignment statement creates new variables and gives them values:



2.4. Variable names and keywords 15

>>> message = 'And now for something completely different'
>>> n = 17
>>> pi = 3.1415926535897931

This example makes three assignments. The first assigns a string to a new variable
named message; the second gives the integer 17 to n; the third assigns the (approxi-
mate) value of π to pi.

A common way to represent variables on paper is to write the name with an arrow
pointing to the variable’s value. This kind of figure is called a state diagram because
it shows what state each of the variables is in (think of it as the variable’s state of mind).
This diagram shows the result of the assignment statements:

message

n

pi

17

’And now for something completely different’

3.1415926535897931

The print statement displays the value of a variable:

>>> print n
17
>>> print pi
3.14159265359

The type of a variable is the type of the value it refers to.

>>> type(message)
<type 'str'>
>>> type(n)
<type 'int'>
>>> type(pi)
<type 'float'>

2.4 Variable names and keywords
Programmers generally choose names for their variables that are meaningful—they
document what the variable is used for.

Variable names can be arbitrarily long. They can contain both letters and numbers,
but they have to begin with a letter. Although it is legal to use uppercase letters, by
convention we don’t. If you do, remember that case matters. Bruce and bruce are
different variables.

The underscore character ( ) can appear in a name. It is often used in names with
multiple words, such as my name or airspeed of unladen swallow.



16 Chapter 2. Variables, expressions and statements

If you give a variable an illegal name, you get a syntax error:

>>> 76trombones = 'big parade'
SyntaxError: invalid syntax
>>> more@ = 1000000
SyntaxError: invalid syntax
>>> class = 'Advanced Theoretical Herpetology'
SyntaxError: invalid syntax

76trombones is illegal because it does not begin with a letter. more is illegal because
it contains an illegal character, @. But what’s wrong with class?

It turns out that class is one of Python’s keywords. The interpreter uses keywords to
recognize the structure of the program, and they cannot be used as variable names.

Python has 31 keywords:

and del from not while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return
def for lambda try

You might want to keep this list handy. If the interpreter complains about one of your
variable names and you don’t know why, see if it is on this list.

2.5 Statements
A statement is an instruction that the Python interpreter can execute. We have seen two
kinds of statements: print and assignment.

When you type a statement on the command line, Python executes it and displays the
result, if there is one.

A script usually contains a sequence of statements. If there is more than one statement,
the results appear one at a time as the statements execute.

For example, the script

print 1
x = 2
print x

produces the output

1
2

The assignment statement produces no output itself.



2.6. Operators and operands 17

2.6 Operators and operands

Operators are special symbols that represent computations like addition and multipli-
cation. The values the operator is applied to are called operands.

The following examples demonstrate the arithmetic operators:

20+32 hour-1 hour*60+minute minute/60 5**2 (5+9)*(15-7)

The symbols +, -, and /, and the use of parenthesis for grouping, mean in Python what
they mean in mathematics. The asterisk (*) is the symbol for multiplication, and ** is
the symbol for exponentiation.

When a variable name appears in the place of an operand, it is replaced with its value
before the operation is performed.

Addition, subtraction, multiplication, and exponentiation all do what you expect, but
you might be surprised by division. The following operation has an unexpected result:

>>> minute = 59
>>> minute/60
0

The value of minute is 59, and in conventional arithmetic 59 divided by 60 is 0.98333,
not 0. The reason for the discrepancy is that Python is performing floor division1.

When both of the operands are integers, the result is also an integer; floor division
chops off the fraction part, so in this example it rounds down to zero.

If either of the operands is a floating-point number, Python performs floating-point
division, and the result is a float:

>>> minute/60.0
0.98333333333333328

The mathematical operators work on long integers; in general any code that works with
int will also work with long.

2.7 Modulus operator

The modulus operator works on integers and yields the remainder when the first
operand is divided by the second. In Python, the modulus operator is a percent sign
(%). The syntax is the same as for other operators:

1This behavior is likely to change in Python 3.0.



18 Chapter 2. Variables, expressions and statements

>>> quotient = 7 / 3
>>> print quotient
2
>>> remainder = 7 % 3
>>> print remainder
1

So 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly useful. For example, you can check
whether one number is divisible by another—if x % y is zero, then x is divisible by y.

Also, you can extract the right-most digit or digits from a number. For example, x %
10 yields the right-most digit of x (in base 10). Similarly x % 100 yields the last two
digits.

2.8 Expressions

An expression is a combination of values, variables, and operators. If you type an
expression on the command line, the interpreter evaluates it and displays the result:

>>> 1 + 1
2

Although expressions can contain values, variables, and operators, not every expression
contains all of these elements. A value all by itself is considered an expression, and so
is a variable.

>>> 17
17
>>> x
2

In a script, an expression all by itself is a legal statement, but it doesn’t do anything.
The following script produces no output at all:

17
3.2
'Hello, World!'
1 + 1

If you want the script to display the values of these expressions, you have to use print
statements.



2.9. Order of operations 19

2.9 Order of operations
When more than one operator appears in an expression, the order of evaluation de-
pends on the rules of precedence. For mathematical operators, Python follows the
mathematical rules. The acronym PEMDAS is a useful way to remember them:

• Parentheses have the highest precedence and can be used to force an expression
to evaluate in the order you want. Since expressions in parentheses are evaluated
first, 2 * (3-1) is 4, and (1+1)**(5-2) is 8. You can also use parentheses to
make an expression easier to read, as in (minute * 100) / 60, even though it
doesn’t change the result.

• Exponentiation has the next highest precedence, so 2**1+1 is 3 and not 4, and
3*1**3 is 3 and not 27.

• Multiplication and Division (including Modulus) have the same precedence,
which is higher than Addition and Subtraction, which also have the same prece-
dence. So 2*3-1 is 5, not 4, and 6+4/2 is 8, not 5.

• Operators with the same precedence are evaluated from left to right. So in the
expression degrees / 2 * pi, the division happens first and the result is mul-
tiplied by pi. If you meant to divide by 2π, you should have used parentheses.

2.10 Keyboard input
The programs we have written so far are a bit rude in the sense that they accept no input
from the user. They just do the same thing every time.

Python provides a built-in function called raw input that gets input from the keyboard.
When this function is called, the program stops and waits for the user to type some-
thing. When the user presses Return or Enter, the program resumes and raw input
returns what the user typed as a string.

>>> input = raw_input()
What are you waiting for?
>>> print input
What are you waiting for?

Before calling raw input, it is a good idea to print a prompt telling the user what to
input. raw input takes a prompt as an argument:

>>> name = raw_input('What...is your name?\n')
What...is your name?
Arthur, King of the Britons!
>>> print name
Arthur, King of the Britons!



20 Chapter 2. Variables, expressions and statements

The sequence \n at the end of the prompt represents a newline, which is a special char-
acter that causes a line break. That’s why the user’s input appears below the prompt.

If you expect the user to type an integer, you can try to convert the return value to int:

>>> prompt = 'What...is the airspeed velocity of an unladen swallow?\n'
>>> speed = raw_input(prompt)
What...is the airspeed velocity of an unladen swallow?
17
>>> int(speed)
17

But if the user types something other than a string of digits, you get an exception:

>>> speed = raw_input(prompt)
What...is the airspeed velocity of an unladen swallow?
What do you mean, an African or a European swallow?
>>> int(speed)
ValueError: invalid literal for int()

We will see how to handle this kind of error later.

2.11 Comments
As programs get bigger and more complicated, they get more difficult to read. Formal
languages are dense, and it is often difficult to look at a piece of code and figure out
what it is doing, or why.

For this reason, it is a good idea to add notes to your programs to explain in natural
language what the program is doing. These notes are called comments, and they are
marked with the # symbol:

# compute the percentage of the hour that has elapsed
percentage = (minute * 100) / 60

In this case, the comment appears on a line by itself. You can also put comments at the
end of a line:

percentage = (minute * 100) / 60 # percentage of an hour

Everything from the # to the end of the line is ignored—it has no effect on the program.

Comments are most useful when they document non-obvious features of the code. It is
reasonable to assume that the reader can figure out what the code does; it is much more
useful to explain why.

This comment is redundant with the code and useless:



2.12. Debugging 21

v = 5 # assign 5 to v

This comment contains useful information that is not in the code:

v = 5 # velocity in meters/second.

Good variable names can reduce the need for comments, but long names can make
complex expressions hard to read, so there is a tradeoff.

2.12 Debugging
At this point the syntax error you are most likely to make is an illegal variable name,
like class and yield (which are keywords) or odd˜job and US$ which contain illegal
characters.

If you put a space in a variable name, Python thinks it is two operands without an
operator:

>>> bad name = 5
SyntaxError: invalid syntax

For syntax errors, the error messages don’t help much. The most common messages are
SyntaxError: invalid syntax and SyntaxError: invalid token, neither of
which is very informative.

The run-time error you are most likely to make is a “use before def;” that is, trying to
use a variable before you have assigned a value. This can happen if you spell a variable
name wrong:

>>> principal = 327.68
>>> interest = principle * rate
NameError: name 'principle' is not defined

Variables names are case sensitive, so Bob is not the same as bob.

At this point the most likely cause of a semantic error is the order of operations. For
example, to evaluate 1

2a , you might be tempted to write

>>> 1.0 / 2.0 * a

But the division happens first, so you would get a/2, which is not the same thing!
Unfortunately, there is no way for Python to know what you intended to write, so in
this case you don’t get an error message; you just get the wrong answer.

And that brings us to the Second Theorem of Debugging:

The only thing worse than getting an error message is not getting an error
message.



22 Chapter 2. Variables, expressions and statements

2.13 Glossary
value: One of the basic units of data, like a number or string, that a program manipu-

lates.

type: A category of values. The types we have seen so far are integers (type int),
floating-point numbers (type float), and strings (type str).

integer: A type that represents whole numbers.

floating-point: A type that represents numbers with fractional parts.

string: A type that represents sequences of characters.

variable: A name that refers to a value.

statement: A section of code that represents a command or action. So far, the state-
ments we have seen are assignments and print statements.

assignment: A statement that assigns a value to a variable.

state diagram: A graphical representation of a set of variables and the values they
refer to.

keyword: A reserved word that is used by the compiler to parse a program; you cannot
use keywords like if, def, and while as variable names.

operator: A special symbol that represents a simple computation like addition, multi-
plication, or string concatenation.

operand: One of the values on which an operator operates.

modulus operator: An operator, denoted with a percent sign (%), that works on inte-
gers and yields the remainder when one number is divided by another.

floor division: The operation that divides two numbers and chops off the fraction part.

expression: A combination of variables, operators, and values that represents a single
result value.

evaluate: To simplify an expression by performing the operations in order to yield a
single value.

rules of precedence: The set of rules governing the order in which expressions in-
volving multiple operators and operands are evaluated.

comment: Information in a program that is meant for other programmers (or anyone
reading the source code) and has no effect on the execution of the program.



2.14. Exercises 23

2.14 Exercises
Exercise 2.1. Assume that we execute the following assignment statements:
width = 17
height = 12.0
delimiter = '.'

For each of the following expressions, write the value of the expression and the type (of
the value of the expression).

1. width/2

2. height/3.0

3. width/2.0

4. 1 + 2 * 5

5. delimiter * 5

Exercise 2.2. Practice using the Python interpreter as a calculator:

• If you ran 10 kilometers in 45 minutes 30 seconds, what was your average pace
in minutes per mile? What was your average speed in miles per hour? (Hint:
there are 1.61 kilometers in a mile).


