Chapter 4

Strings

4.1 A string is a sequence

A string is a sequence of characters. You can access the characters one at a time with
the bracket operator:

>>> fruit = 'banana'
>>> letter = fruit[l]

The second statement selects character number 1 from fruit and assigns it to letter.

The expression in brackets is called an index. The index indicates which character in
the sequence you want (hence the name).

But you might not get what you expect:

>>> print letter
a

For most people, the first letter of 'banana’ is b, not a. But for computer scientists,
the index is an offset from the beginning of the string, and the offset of the first letter
is zero.

>>> letter = fruit[0]
>>> print letter
b

So b is the Oth letter (“zero-eth”) of '‘banana’, a is the 1th letter (“one-eth”), and n is
the 2th (“two-eth”) letter.

You can use any expression, including variables and operators, as an index, but the
value of the index has to be an integer. Otherwise you get:

32 Chapter 4. Strings

>>> letter = fruit[l1.0]
TypeError: string indices must be integers

4.2 len

len is a built-in function that returns the number of characters in a string:

>>> fruit = 'banana'
>>> len(fruit)
6

To get the last letter of a string, you might be tempted to try something like this:

>>> length = len(fruit)
>>> last = fruit[length]
IndexError: string index out of range

The reason for the IndexError is that there is no letter in ' banana’ with the index 6.
Since we started counting at zero, the six letters are numbered O to 5. To get the last
character, you have to subtract 1 from length:

>>> last = fruit[length-1]
>>> print last
a

Alternatively, you can use negative indices, which count backward from the end of the
string. The expression fruit[-1] yields the last letter, fruit[-2] yields the second
to last, and so on.

4.3 String operations

In general, you cannot perform mathematical operations on strings, even if the strings
look like numbers, so the following are illegal:

'2'-"1" 'eggs'/'easy' "third'*'a charm'

The + operator does work with strings, but it might not do exactly what you expect: it
performs concatenation, which means joining the strings by linking them end-to-end.
For example:

first = 'throat'
second = 'warbler'
print first + second

4.4. String slices 33

The output of this program is throatwarbler.

The * operator also works on strings; it performs repetition. For example, ' Spam’ *3 is
' SpamSpamSpam’ . If one of the operands is a string, the other has to be an integer.

On one hand, this use of + and * makes sense by analogy with addition and multi-
plication. Just as 4*3 is equivalent to 4+4+4, we expect 'Spam’ *3 to be the same as
"Spam’+’Spam’+’Spam’, and it is. On the other hand, there is a significant way in
which string concatenation and repetition are different from integer addition and multi-
plication. Can you think of a property that addition and multiplication have that string
concatenation and repetition do not?

4.4 String slices

A segment of a string is called a slice. Selecting a slice is similar to selecting a charac-
ter:

>>> s = 'Monty Python'
>>> print s[0:5]

Monty

>>> print s[6:13]
Python

The operator [n:m] returns the part of the string from the “n-eth” character to the
“m-eth” character, including the first but excluding the last. This behavior is counter-
intuitive, but might help to imagine the indices pointing between the characters, as in
the following diagram:

it—"pbanana’
index 0 1 2 3 4 5 6

If you omit the first index (before the colon), the slice starts at the beginning of the

string. If you omit the second index, the slice goes to the end of the string. Thus:

>>> fruit = 'banana'
>>> fruit[:3]

"ban'

>>> fruit[3:]

ana

If the first index is greater than or equal to the second the result is an empty string,
represented by two quotation marks:

34 Chapter 4. Strings

>>> fruit = 'banana’
>>> fruit[3:3]

An empty string contains no characters and has length 0, but other than that, it is the
same as any other string.
Exercise 4.1. Given that fruit is a string, what does fruit[:] mean?

4.5 Strings are immutable

It is tempting to use the [] operator on the left side of an assignment, with the intention
of changing a character in a string. For example:

>>> greeting = 'Hello, world!'
>>> greeting[0] = 'J'
TypeError: object does not support item assignment

The “object” in this case is the string and the “item” is the character you tried to assign.
For now, an object is the same thing as a value, but we will refine that definition later.
An item is one of the values in a sequence.

The reason for the error is that strings are immutable, which means you can’t change
an existing string. The best you can do is create a new string that is a variation on the
original:

>>> greeting = 'Hello, world!'

>>> new greeting = 'J' + greeting[l:]
>>> print new greeting

Jello, world!

This example concatenates a new first letter onto a slice of greeting. It has no effect
on the original string.

4.6 string methods

A method is similar to a function—it takes arguments and returns a value—but the
syntax is different. For example, the method upper takes a string and returns a new
string with all uppercase letters:

Instead of the function syntax upper (word), it uses the method syntax word.upper().

>>> word = 'banana’

>>> new_word = word.upper()
>>> print new_word

BANANA

4.7. Glossary 35

This form of dot notation specifies the name of the method, upper, and the name of
the string to apply the method to, word. The parentheses indicate that this method has
no parameters.

A method call is called an invocation; in this case, we would say that we are invoking
upper on the word.

The string method named find is the opposite of the [] operator. Instead of taking
an index and extracting the corresponding character, it takes a character and finds the
index where that character appears. If the character is not found, the function returns
-1.

>>> word = 'banana’

>>> index = word.find('a')
>>> print index

1

In this example, we invoke find on word and pass the letter we are looking for as a
parameter.

The £ind method can find substrings, not just characters:

>>> word.find('na')
2

It can take as a second argument the index where it should start:

>>> word.find('na', 3)
4

And as a third argument where it should stop:

>>> name = 'bob'
>>> name.find('b', 1, 2)
-1

This search fails because b does not appear in the index range from 1 to 2 (not including
2).

Exercise 4.2. Another useful string method is called count Read the documentation of
this method and write an invocation that counts the number of as in 'banana’. Hint:
there are three.

4.7 Glossary

object: Something a variable can refer to. For now, you can use “object” and “value”
interchangeably.

sequence: An ordered set; that is, a set of values where each value is identified by an
integer index.

36 Chapter 4. Strings

item: One of the values in a sequence.

index: An integer value used to select an item in a sequence, such as a character in a
string.

slice: A part of a string specified by a range of indices.

empty string: A string with no characters and length O, represented by two quotation
marks.

concatenate: To join two operands end-to-end.
immutable: The property of a sequence whose items cannot be assigned.

traverse: To iterate through the items in a sequence, performing a similar operation
on each.

search: A pattern of traversal that stops when it finds what it is looking for.

counter: A variable used to count something, usually initialized to zero and then in-
cremented.

method: A function that is associated with an object and called using dot notation.

invocation: A statement that calls a method.

4.8 Exercises

