
Part II

Decisions, Detours and Data
Structures





Chapter 5

Conditionals

5.1 Boolean expressions
A boolean expression is an expression that is either true or false. The following ex-
amples use the operator ==, which compares two operands and produces True if they
are equal and False otherwise:

>>> 5 == 5
True
>>> 5 == 6
False

True and False are special values that belong to the type bool; they are not strings:

>>> type(True)
<type 'bool'>
>>> type(False)
<type 'bool'>

The == operator is one of the comparison operators; the others are:

x != y # x is not equal to y
x > y # x is greater than y
x < y # x is less than y
x >= y # x is greater than or equal to y
x <= y # x is less than or equal to y

Although these operations are probably familiar to you, the Python symbols are differ-
ent from the mathematical symbols. A common error is to use a single equal sign (=)
instead of a double equal sign (==). Remember that = is an assignment operator and ==
is a comparison operator. There is no such thing as =< or =>.



40 Chapter 5. Conditionals

5.2 Logical operators

There are three logical operators: and, or, and not. The semantics (meaning) of these
operators is similar to their meaning in English. For example, x > 0 and x < 10 is
true only if x is greater than 0 and less than 10.

n%2 == 0 or n%3 == 0 is true if either of the conditions is true, that is, if the number
is divisible by 2 or 3.

Finally, the not operator negates a boolean expression, so not (x > y) is true if x >
y is false, that is, if x is less than or equal to y.

Strictly speaking, the operands of the logical operators should be boolean expressions,
but Python is not very strict. Any nonzero number is interpreted as “true.”

>>> 17 and True
True

This flexibility can be useful, but there are some subtleties to it that might be confusing.
You might want to avoid it (unless you know what you are doing).

5.3 Conditional execution

In order to write useful programs, we almost always need the ability to check conditions
and change the behavior of the program accordingly. Conditional statements give us
this ability. The simplest form is the if statement:

if x > 0:
print 'x is positive'

The boolean expression after the if statement is called the condition. If it is true, then
the indented statement gets executed. If not, nothing happens.

if statements have the same structure as function definitions: a header followed by an
indented block. Statements like this are called compound statements.

There is no limit on the number of statements that can appear in the body, but there has
to be at least one. Occasionally, it is useful to have a body with no statements (usually
as a place keeper for code you haven’t written yet). In that case, you can use the pass
statement, which does nothing.

if x < 0:
pass # need to handle negative values!



5.4. Alternative execution 41

5.4 Alternative execution

A second form of the if statement is alternative execution, in which there are two
possibilities and the condition determines which one gets executed. The syntax looks
like this:

if x%2 == 0:
print 'x is even'

else:
print 'x is odd'

If the remainder when x is divided by 2 is 0, then we know that x is even, and the
program displays a message to that effect. If the condition is false, the second set of
statements is executed. Since the condition must be true or false, exactly one of the
alternatives will be executed. The alternatives are called branches, because they are
branches in the flow of execution.

5.5 Chained conditionals

Sometimes there are more than two possibilities and we need more than two branches.
One way to express a computation like that is a chained conditional:

if x < y:
print 'x is less than y'

elif x > y:
print 'x is greater than y'

else:
print 'x and y are equal'

elif is an abbreviation of “else if.” Again, exactly one branch will be executed. There
is no limit on the number of elif statements. If there is an else clause, it has to be at
the end, but there doesn’t have to be one.

if choice == 1:
function1()

elif choice == 2:
function2()

elif choice == 3:
function3()

Each condition is checked in order. If the first is false, the next is checked, and so on. If
one of them is true, the corresponding branch executes, and the statement ends. Even
if more than one condition is true, only the first true branch executes.



42 Chapter 5. Conditionals

5.6 Nested conditionals
One conditional can also be nested within another. We could have written the tri-
chotomy example like this:

if x == y:
print 'x and y are equal'

else:
if x < y:

print 'x is less than y'
else:

print 'x is greater than y'

The outer conditional contains two branches. The first branch contains a simple state-
ment. The second branch contains another if statement, which has two branches of its
own. Those two branches are both simple statements, although they could have been
conditional statements as well.

Although the indentation of the statements makes the structure apparent, nested condi-
tionals become difficult to read very quickly. In general, it is a good idea to avoid them
when you can.

Logical operators often provide a way to simplify nested conditional statements. For
example, we can rewrite the following code using a single conditional:

if 0 < x:
if x < 10:

print 'x is a positive single digit.'

The print statement is executed only if we make it past both conditionals, so we can
get the same effect with the and operator:

if 0 < x and x < 10:
print 'x is a positive single digit.'

5.7 String comparison
The comparison operators work on strings. To see if two strings are equal:

if word == 'banana':
print 'Yes, we have no bananas!'

Other comparison operations are useful for putting words in alphabetical order:

if word < 'banana':
print 'Your word,' + word + ', comes before banana.'

elif word > 'banana':



5.8. Random numbers 43

print 'Your word,' + word + ', comes after banana.'
else:

print 'Yes, we have no bananas!'

Python does not handle uppercase and lowercase letters the same way that people do.
All the uppercase letters come before all the lowercase letters, so:

Your word, Zebra, comes before banana.

A common way to address this problem is to convert strings to a standard format, such
as all lowercase, before performing the comparison. The more difficult problem is
making the program realize that zebras are not fruit.

5.8 Random numbers
Most computer programs do the same thing every time they execute, given the same
inputs, so they are said to be deterministic. Determinism is usually a good thing, since
we expect the same calculation to yield the same result. For some applications, though,
we want the computer to be unpredictable. Games are an obvious example, but there
are more.

Making a program truly nondeterministic turns out to be not so easy, but there are ways
to make it at least seem nondeterministic. One of them is to use algorithms that generate
pseudorandom numbers. Pseudorandom numbers are not truly random because they
are generated by a deterministic computation, but just by looking at the numbers it is
all but impossible to distinguish them from random.

The random module provides functions that generate pseudorandom numbers (which I
will simply call “random” from here on).

The function random returns a random float between 0.0 and 1.0 (including 0.0 but not
1.0). Each time you call random, you get the next number in a long series. We can use
this to simulate flipping a coin with a 50% probability of Heads and a 50% probability
of Tails:

import random

x = random.random()
if x > 0.5:

print "Heads"
else:

print "Tails"

The function randint takes parameters low and high and returns an integer between
low and high (including both).



44 Chapter 5. Conditionals

>>> random.randint(5, 10)
5
>>> random.randint(5, 10)
9

The random module also provides functions to generate random values from continu-
ous distributions including Gaussian, exponential, gamma, and a few more.

5.9 Debugging
The traceback Python displays when an error occurs contains a lot of information, but
it can be overwhelming, especially when there are many frames on the stack. The most
useful pieces are usually:

• what kind of error it was, and

• where it occurred.

Syntax errors are usually easy to find, but there are a few gotchas. Whitespace errors
can be tricky because spaces and tabs are invisible and we are used to ignoring them.

>>> x = 5
>>> y = 6
File "<stdin>", line 1
y = 6
ˆ

SyntaxError: invalid syntax

In this example, the problem is that the second line is indented by one space. But the er-
ror message points to y, which is misleading. In general, error messages indicate where
the error was discovered, but the actual error might be earlier in the code, sometimes
on a previous line.

The same is true of run time errors. Suppose you are trying to compute a signal-to-
noise ratio in decibels. The formula is SNRdb = 10log10(Psignal/Pnoise). In Python,
you might write something like this:

import math
signal_power = 9
noise_power = 10
ratio = signal_power / noise_power
decibels = 10 * math.log10(ratio)
print decibels

But when you run it, you get an error message:



5.10. Glossary 45

Traceback (most recent call last):
File "snr.py", line 5, in ?

decibels = 10 * math.log10(ratio)
OverflowError: math range error

The error message indicates line 5, but there is nothing wrong with that line. To find the
real error, it might be useful to print the value of ratio, which turns out to be 0. The
problem is in line 4, because dividing two integers does floor division. The solution is
to represent signal power and noise power with floating-point values.

And that brings me to the Fourth Theorem of Debugging:

Error messages tell you where the problem was discovered, but that is
often not where it was caused.

5.10 Glossary
boolean expression: An expression whose value is either True or False.

comparison operator: One of the operators that compares its operands: ==, !=, >, <,
>=, and <=.

logical operator: One of the operators that combines boolean expressions: and, or,
and not.

conditional statement: A statement that controls the flow of execution depending on
some condition.

condition: The boolean expression in a conditional statement that determines which
branch is executed.

compound statement: A statement that consists of a header and a body. The header
ends with a colon (:). The body is indented relative to the header.

body: The sequence of statements within a compound statement.

branch: One of the alternative sequences of statements in a conditional statement.

chained conditional: A conditional statement with a series of alternative branches.

5.11 Exercises


