
Chapter 8

Lists

8.1 A list is a sequence
Like a string, a list is a sequence of values. In a string, the values are characters; in a
list, they can be any type. The values in list are called elements or sometimes items.

There are several ways to create a new list; the simplest is to enclose the elements in
square brackets ([and]):

[10, 20, 30, 40]
['crunchy frog', 'ram bladder', 'lark vomit']

The first example is a list of four integers. The second is a list of three strings. The
elements of a list don’t have to be the same type. The following list contains a string, a
float, an integer, and (lo!) another list:

['spam', 2.0, 5, [10, 20]]

A list within another list is said to be nested.

A list that contains no elements is called an empty list; you can create one with empty
brackets, [].

Lists that contain consecutive integers are common, so Python provides a built-in func-
tion to create them:

>>> range(1,5)
[1, 2, 3, 4]

range takes two arguments and returns a list that contains all the integers from the first
to the second, including the first but not including the second!

With one argument, range creates a list that starts at 0:

74 Chapter 8. Lists

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

If there is a third argument, it specifies the space between successive values, which is
called the “step size.” This example counts from 1 to 10 by steps of 2:

>>> range(1, 10, 2)
[1, 3, 5, 7, 9]

As you might expect, you can assign list values to variables:

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']
>>> numbers = [17, 123]
>>> empty = []
>>> print cheeses, numbers, empty
['Cheddar', 'Edam', 'Gouda'] [17, 123] []

8.2 Lists are mutable

The syntax for accessing the elements of a list is the same as for accessing the charac-
ters of a string—the bracket operator ([]). The expression inside the brackets specifies
the index. Remember that the indices start at 0:

>>> print cheeses[0]
Cheddar

Unlike strings, lists are mutable. When the bracket operator appears on the left side of
an assignment, it identifies the element of the list that will be assigned.

>>> numbers = [17, 123]
>>> numbers[1] = 5
>>> print numbers
[17, 5]

You can think of a list as a relationship between indices and elements. This relationship
is called amapping; each index “maps to” one of the elements. Here is a state diagram
showing cheeses, numbers and empty:

8.3. List operations 75

0

1

list

numbers 17

123

5

list

empty

0

1

2

’Cheddar’

’Edam’

’Gouda’

list

cheeses

Lists are represented by boxes with the word “list” outside and the elements of the
list inside. cheeses refers to a list with three elements indexed 0, 1 and 2. numbers
contains two elements; the diagram shows that the value of the second element has
been reassigned from 123 to 5. empty refers to a list with no elements.

The bracket operator can appear anywhere in an expression. When it appears on the
left side of an assignment, it changes one of the elements in the list, so the one-eth
element of numbers, which used to be 123, is now 5.

List indices work the same way as string indices:

• Any integer expression can be used as an index.

• If you try to read or write an element that does not exist, you get an IndexError.

• If an index has a negative value, it counts backward from the end of the list.

8.3 List operations
The + operator concatenates lists:

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> c = a + b
>>> print c
[1, 2, 3, 4, 5, 6]

Similarly, the * operator repeats a list a given number of times:

76 Chapter 8. Lists

>>> [0] * 4
[0, 0, 0, 0]
>>> [1, 2, 3] * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]

The first example repeats [0] four times. The second example repeats the list [1, 2,
3] three times.

8.4 List slices
The slice operator also work on lists:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']
>>> t[1:3]
['b', 'c']
>>> t[:4]
['a', 'b', 'c', 'd']
>>> t[3:]
['d', 'e', 'f']

If you omit the first index, the slice starts at the beginning. If you omit the second, the
slice goes to the end. So if you omit both, the slice is a copy of the whole list.

>>> t[:]
['a', 'b', 'c', 'd', 'e', 'f']

A slice operator on the left side of an assignment can update multiple elements:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']
>>> t[1:3] = ['x', 'y']
>>> print t
['a', 'x', 'y', 'd', 'e', 'f']

8.5 List methods
Python provides methods that operate on lists. For example, append adds a new ele-
ment to the end of a list:

>>> t = ['a', 'b', 'c']
>>> t.append('d')
>>> print t
['a', 'b', 'c', 'd']

extend takes a list as an argument and appends all of the elements:

8.6. Deleting elements 77

>>> t1 = ['a', 'b', 'c']
>>> t2 = ['d', 'e']
>>> t1.extend(t2)
>>> print t1
['a', 'b', 'c', 'd', 'e']

This example leaves t2 unmodified.

sort arranges the elements of the list from low to high:

>>> t = ['d', 'c', 'e', 'b', 'a']
>>> t.sort()
>>> print t
['a', 'b', 'c', 'd', 'e']

List methods are all void; they modify the list and return None. If you accidentally
write t = t.sort(), you will be disappointed with the result.

8.6 Deleting elements
There are several ways to delete elements from a list. If you know the index of the
element you want, you can use pop:

>>> t = ['a', 'b', 'c']
>>> x = t.pop(1)
>>> print t
['a', 'c']
>>> print x
b

pop modifies the list and returns the element that was removed.

If you don’t need the removed value, you can use the del operator:

>>> t = ['a', 'b', 'c']
>>> del t[1]
>>> print t
['a', 'c']

If you know the element you want to remove (but not the index), you can use remove:

>>> t = ['a', 'b', 'c']
>>> t.remove('b')
>>> print t
['a', 'c']

The return value from remove is None.

To remove more than one element, you can use del with a slice index:

78 Chapter 8. Lists

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']
>>> del t[1:5]
>>> print t
['a', 'f']

As usual, the slice selects all the elements up to, but not including, the second index.

8.7 Objects and values
If we execute these assignment statements:

a = 'banana'
b = 'banana'

We know that a and b both refer to a string, but we don’t know whether they refer to
the same string. There are two possible states:

a
b

’banana’
a
b

’banana’
’banana’

In one case, a and b refer to two different objects that have the same value. In the
second case, they refer to the same object.

To check whether two variables refer to the same object, you can use the is operator.

>>> a = 'banana'
>>> b = 'banana'
>>> a is b
True

In this example, Python only created one string object, and both a and b refer to it.

In contrast, when you create two lists, you get two objects:

>>> a = [1, 2, 3]
>>> b = [1, 2, 3]
>>> a is b
False

So the state diagram looks like this:

a

b

[1, 2, 3]

[1, 2, 3]

8.8. Aliasing 79

In this case we would say that the two lists are equivalent, because they have the same
elements, but not identical, because they are not the same object. If two objects are
identical, they are also equivalent, but if they are equivalent, they are not necessarily
identical.

Until now, we have been using “object” and “value” interchangeably, but it is more
precise to say that an object has a value. If you execute a = [1,2,3], a refers to a list
object whose value is a particular sequence of elements. If another list has the same
elements, we would say it has the same value.

8.8 Aliasing
If a refers to an object and you assign b = a, then both variables refer to the same
object. For example, if you execute:

>>> a = [1, 2, 3]
>>> b = a

Then a and b refer to the same list. The state diagram looks like this:

a

b
[1, 2, 3]

The association of a variable with an object is called a reference. In this example, there
are two references to the same object.

An object with more than one reference has, in some sense, more than one name, so
we say that the object is aliased.

If the aliased object is mutable, changes made with one alias affect the other:

>>> b[0] = 17
>>> print a
[17, 2, 3]

Although this behavior can be useful, it is sometimes unexpected or undesirable. In
general, it is safer to avoid aliasing when you are working with mutable objects.

For immutable objects like strings, aliasing is not as much of a problem. In this exam-
ple:

a = 'banana'
b = 'banana'

It almost never makes a difference whether a and b refer to the same string or not.

80 Chapter 8. Lists

8.9 List arguments
When you pass a list to a function, the function gets a reference to the list. If the func-
tion modifies a list parameter, the caller sees the change. For example, delete head
removes the first element from a list:

def delete_head(t):
del t[0]

Here’s how it is used:

>>> letters = ['a', 'b', 'c']
>>> delete_head(letters)
>>> print letters
['b', 'c']

The parameter t and the variable letters are aliases for the same object. The stack
diagram looks like this:

0

1

2

’a’

’b’

’c’

list

t

__main__ letters

delete_head

Since the list is shared by two frames, I drew it between them.

If a function returns a list, it returns a reference to the list. For example, tail returns a
list that contains all but the first element of the given list:

def tail(t):
return t[1:]

Here’s how tail is used:

>>> letters = ['a', 'b', 'c']
>>> rest = tail(letters)
>>> print rest
['b', 'c']

Because the return value was created with the slice operator, it is a new list. The
original list is unmodified.

8.10 Copying lists
When you assign an object to a variable, Python copies the reference to the object.

8.11. Lists and strings 81

>>> a = [1, 2, 3]
>>> b = a

In this case a and b refer to the same list.

If you want to copy the list (not just a reference to it), you can use the slice operator:

>>> a = [1, 2, 3]
>>> b = a[:]
>>> print b
[1, 2, 3]

Making a slice of a creates a new list. In this case the slice contains all of the elements
from the original list.

Another way to make a copy is the copy function from the copy module:

>>> import copy
>>> a = [1, 2, 3]
>>> b = copy.copy(a)
>>> print b

But it is more idiomatic to use the slice operator.

8.11 Lists and strings
A string is a sequence of characters and a list is a sequence of values, but a list of
characters is not the same as a string. To convert from a string to a list of characters,
you can use the list function:

>>> s = 'spam'
>>> t = list(s)
>>> print t
['s', 'p', 'a', 'm']

list breaks a string into individual letters. If you want to break a string into words,
you can use the split method:

>>> s = 'pining for the fjords'
>>> t = s.split()
>>> print t
['pining', 'for', 'the', 'fjords']

An optional argument called a delimiter specifies which characters to use as word
boundaries. The following example uses ’, ’ (a comma followed by a space) as the
delimiter:

82 Chapter 8. Lists

>>> s = 'spam, spam, spam'
>>> delimiter = ', '
>>> s.split(delimiter)
['spam', 'spam', 'spam']

join is the inverse of split. It takes a list of strings and concatenates the elements.
join is a string method, so you have to invoke it on the delimiter and pass the list as a
parameter:

>>> t = ['pining', 'for', 'the', 'fjords']
>>> delimiter = ' '
>>> delimiter.join(t)
'pining for the fjords'

In this case the delimiter is a space character, so join puts a space between words. To
concatenate strings without spaces, you can use the empty string, ’’ as a delimiter.

