
Chapter 9

For Loops

9.1 Traversing a string
A lot of computations involve processing a string one character at a time. Often they
start at the beginning, select each character in turn, do something to it, and continue
until the end. This pattern of processing is called a traversal. One way to write a
traversal is with a while statement:

index = 0
while index < len(fruit):

letter = fruit[index]
print letter
index = index + 1

This loop traverses the string and displays each letter on a line by itself. The loop
condition is index < len(fruit), so when index is equal to the length of the string,
the condition is false, and the body of the loop is not executed. The last character
accessed is the one with the index len(fruit)-1, which is the last character in the
string.
Exercise 9.1. Write a function that takes a string as an argument and displays the
letters backward, one per line.

Another way to write a traversal is with a for loop:

for char in fruit:
print char

Each time through the loop, the next character in the string is assigned to the variable
char. The loop continues until no characters are left.

The following example shows how to use concatenation (string addition) and a for
loop to generate an abecedarian series (that is, in alphabetical order). In Robert Mc-



84 Chapter 9. For Loops

Closkey’s book Make Way for Ducklings, the names of the ducklings are Jack, Kack,
Lack, Mack, Nack, Ouack, Pack, and Quack. This loop outputs these names in order:

prefixes = 'JKLMNOPQ'
suffix = 'ack'

for letter in prefixes:
print letter + suffix

The output is:

Jack
Kack
Lack
Mack
Nack
Oack
Pack
Qack

Of course, that’s not quite right because “Ouack” and “Quack” are misspelled.
Exercise 9.2. Modify the program to fix this error.

9.2 Traversing a list
The most common way to traverse the elements of a list is with a for loop. The syntax
is the same as for strings:

for cheese in cheeses:
print cheese

This works well if you only need to read the elements of the list. But if you want to
write or update the elements, you need the indices. A common way to do that is to
combine the functions range and len:

for i in range(len(numbers)):
numbers[i] = numbers[i] * 2

This loop traverses the list and updates each element. len returns the number of ele-
ments in the list. range returns a list of indices from 0 to n−1, where n is the length of
the list. Each time through the loop i gets the index of the next element. The assign-
ment statement in the body uses i to read the old value of the element and to assign the
new value.

A for loop over an empty list never executes the body:

for x in empty:
print 'This never happens.'



9.3. A find function 85

Although a list can contain another list, the nested list still counts as a single element.
The length of this list is four:

['spam!', 1, ['Brie', 'Roquefort', 'Pol le Veq'], [1, 2, 3]]

9.3 A find function
What does the following function do?

def find(word, letter):
index = 0
while index < len(word):

if word[index] == letter:
return index

index = index + 1
return -1

This use of loops is the basic logic behind the find method discussed earlier.

This is the first example we have seen of a return statement inside a loop. If
word[index] == letter, the function breaks out of the loop and returns immedi-
ately.

If the character doesn’t appear in the string, the program exits the loop normally and
returns -1.

This pattern of computation—traversing a sequence and returning when we find what
we are looking for—is a called a search.
Exercise 9.3. Modify find so that it has a third parameter, the index in word where it
should start looking.

9.4 Looping and counting
The following program counts the number of times the letter a appears in a string:

word = 'banana'
count = 0
for letter in word:

if letter == 'a':
count = count + 1

print count

This program demonstrates another pattern of computation called a counter. The vari-
able count is initialized to 0 and then incremented each time an a is found. When the
loop exits, count contains the result—the total number of a’s.



86 Chapter 9. For Loops

Exercise 9.4. Encapsulate this code in a function named count, and generalize it so
that it accepts the string and the letter as arguments.
Exercise 9.5. Rewrite this function so that instead of traversing the string, it uses the
three-parameter version of find from the previous section.

9.5 The in operator
The operators we have seen so far are all special characters like + and *, but there are a
few operators that are words. in is a boolean operator that takes two strings and returns
True if the first appears as a substring in the second:

>>> 'an' in 'banana'
True
>>> 'c' in 'banana'
False

For example, the following function prints all the letters from word1 that also appear
in word2:

def in_both(word1, word2):
for letter in word1:

if letter in word2:
print letter

With well-chosen variable names, Python sometimes reads like English. You could
read this loop, “for (each) letter in (the first) word, if (the) letter (appears) in (the
second) word, print (the) letter.”

Here’s what you get if you compare apples and oranges:

>>> in_both('apples', 'oranges')
a
e
s

The in operator also works on lists.

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']
>>> 'Edam' in cheeses
True
>>> 'Brie' in cheeses
False

9.6 break

As with while loops, sometimes you don’t know it’s time to end a for loop until you
get half way through the body. Since we can’t reset a sentinal value to exit the loop, in



9.7. Map, filter and reduce 87

this case we use the break statement to jump out of the loop.

For example, suppose you want to count the number of times the word ”lemur” appears
in a list, but stop early if you see the word ”done”. You could write:

count = 0
animals = ['cat', 'lemur', 'dog', 'fox', 'rabbit', 'lemur', 'done', 'lemur']
for item in animals:

if item == 'lemur':
count += 1

elif item == 'done':
break

print count

The loop now runs until either it consumes all elements of the list or it hits the break
statement, and count will be equal to 2 after execution. This way of writing for loops
is common because you can check the condition anywhere in the loop (not just at the
top).

9.7 Map, filter and reduce
To add up all the numbers in a list, you can use a loop like this:

def add_all(t):
total = 0
for x in t:

total += x
return total

total is initialized to 0. Each time through the loop, x gets one element from the list.
The += operator provides a short way to update a variable:

total += x

is equivalent to:

total = total + x

As the loop executes, total accumulates the sum of the elements; a variable used this
way is sometimes called an accumulator.

Adding up the elements of a list is such a common operation that Python provides it as
a built-in function, sum:

>>> t = [1, 2, 3]
>>> sum(t)
6



88 Chapter 9. For Loops

An operation like this that combines a sequence of elements into a single value is
sometimes called reduce.

Sometimes you want to traverse one list while building another. For example, the
following function takes a list of strings and returns a new list that contains capitalized
strings:

def capitalize_all(t):
res = []
for s in t:

res.append(s.capitalize())
return res

res is initialized with an empty list; each time through the loop, we append the next
element. So res is another kind of accumulator.

An operation like capitalize all is sometimes called a map because it “maps” a
function (in this case the method capitalize) onto each of the elements in a sequence.

Another common operation is to select some of the elements from a list and return a
sublist. For example, the following function takes a list of strings and returns a list that
contains only the uppercase strings:

def only_upper(t):
res = []
for s in t:

if s.isupper():
res.append(s)

return res

isupper is a string method that returns True if the string contains only upper case
letters.

An operation like only upper is called a filter because it selects some of the elements
and filters out the others.

Most common list operations can be expressed as a combination of map, filter and
reduce. Because these operations are so common, Python provides language features
to support them, including the built-in function reduce and an operator called a “list
comprehension.” But these features are idiomatic to Python, so I won’t go into the
details.
Exercise 9.6. Write a function that takes a list of numbers and returns the cumulative
sum; that is, a new list where the ith element is the sum of the first i+1 elements from
the original list. For example, the cumulative sum of [1, 2, 3] is [1, 3, 6].

9.8 Debugging
When you are debugging a program, and especially if you are working on a hard bug,
there are four things to try:



9.8. Debugging 89

reading: Examine your code, read it back to yourself, and check that it means what
you meant to say.

running: Experiment by making changes and running different versions. Often if you
display the right thing at the right place in the program, the problem becomes
obvious, but sometimes you have to spend some time to build scaffolding.

ruminating: Take some time to think! What kind of error is it: syntax, run-time, log-
ical? What information can you get from the error messages, or from the output
of the program? What kind of error could cause the problem you’re seeing?
What did you change last, before the problem appeared?

retreating: At some point, the best thing to do is back off, undoing recent changes,
until you get back to a program that works, and that you understand. Then you
can starting rebuilding.

Beginning programmers sometimes get stuck on one of these activities and forget the
others. Each activity comes with its own failure mode.

For example, reading your code might help if the problem is a typographical error, but
not if the problem is a conceptual misunderstanding. If you don’t understand what your
program does, you can read it 100 times and never see the error, because the error is in
your head.

Running experiments can help, especially if you run small, simple tests. But if you run
experiments without thinking or reading your code, you might fall into a pattern I call
“random walk programming,” which is the process of making random changes until
the program does the right thing. Needless to say, random walk programming can take
a long time.

The way out is to take more time to think. Debugging is like an experimental science.
You should have at least one hypothesis about what the problem is. If there are two or
more possibilities, try to think of a test that would eliminate one of them.

Taking a break sometimes helps with the thinking. So does talking. If you explain the
problem to someone else (or even yourself), you will sometimes find the answer before
you finish asking the question.

But even the best debugging techniques will fail if there are too many errors, or if the
code you are trying to fix is too big and complicated. Sometimes the best option is to
retreat, simplifying the program until you get to something that you understand, and
that works.

Beginning programmers are often reluctant to retreat, because they can’t stand to delete
a line of code (even if it’s wrong). If it makes you feel better, copy your program into
another file before you start stripping it down. Then you can paste the pieces back in a
little bit at a time.

To summarize, here’s the Seventh Theorem of debugging:



90 Chapter 9. For Loops

Finding a hard bug requires reading, running, ruminating, and sometimes
retreating. If you get stuck on one of these activities, try the others.

Exercise 9.7. Starting with this diagram, execute the program on paper, changing the
values of i and j during each iteration. Find and fix the second error in this function.

9.9 Glossary
list: A sequence of values.

element: One of the values in a list (or other sequence), also called items.

index: An integer value that indicates an element in a list.

nested list: A list that is an element of another list.

list traversal: The sequential accessing of each element in a list.

mapping: A relationship in which each element of one set corresponds to an element
of another set. For example, a list is a mapping from indices to elements.

accumulator: A variable used in a loop to add up or accumulate a result.

reduce: A processing pattern that traverses a sequence and accumulates the elements
into a single result.

map: A processing pattern that traverses a sequence and performs an operation on
each element.

filter: A processing pattern that traverses a list and selects the elements that satisfy
some criterion.

object: Something a variable can refer to. An object has a type and a value.

equivalent: Having the same value.

identical: Being the same object (which implies equivalence).

reference: The association between a variable and its value.

aliasing: A circumstance where two variables refer to the same object.

delimiter: A character or string used to indicate where a string should be split.



9.10. Exercises 91

9.10 Exercises
Exercise 9.8. The slice operator can take a third argument that determines the step
size, so t[::2] creates a list that contains every other element from t. If the step
size is negative, it goes through the list backward, so t[::-1] creates a list of all the
elements in t in reverse order.

Use this idiom to write a one-line version of is palindrome from Exercise 19.7.
Exercise 9.9. Write a function called is sorted that takes a list as a parameter and
returns True if the list is sorted in ascending order and False otherwise. You can
assume (as a precondition) that the elements of the list can be compared with the com-
parison operators <, >, etc.

For example, is sorted([1,2,2]) should return True and is sorted([’b’,’a’])
should return False.


