
Appendix A

Debugging

Different kinds of errors can occur in a program, and it is useful to distinguish among
them in order to track them down more quickly:

• Syntax errors are produced by Python when it is translating the source code into
byte code. They usually indicate that there is something wrong with the syntax
of the program. Example: Omitting the colon at the end of a def statement yields
the somewhat redundant message SyntaxError: invalid syntax.

• Runtime errors are produced by the runtime system if something goes wrong
while the program is running. Most runtime error messages include information
about where the error occurred and what functions were executing. Example:
An infinite recursion eventually causes a runtime error of “maximum recursion
depth exceeded.”

• Semantic errors are problems with a program that compiles and runs but doesn’t
do the right thing. Example: An expression may not be evaluated in the order
you expect, yielding an unexpected result.

The first step in debugging is to figure out which kind of error you are dealing with.
Although the following sections are organized by error type, some techniques are ap-
plicable in more than one situation.

A.1 Syntax errors
Syntax errors are usually easy to fix once you figure out what they are. Unfortu-
nately, the error messages are often not helpful. The most common messages are
SyntaxError: invalid syntax and SyntaxError: invalid token, neither of
which is very informative.



216 Appendix A. Debugging

On the other hand, the message does tell you where in the program the problem oc-
curred. Actually, it tells you where Python noticed a problem, which is not necessarily
where the error is. Sometimes the error is prior to the location of the error message,
often on the preceding line.

If you are building the program incrementally, you should have a good idea about where
the error is. It will be in the last line you added.

If you are copying code from a book, start by comparing your code to the book’s code
very carefully. Check every character. At the same time, remember that the book might
be wrong, so if you see something that looks like a syntax error, it might be.

Here are some ways to avoid the most common syntax errors:

1. Make sure you are not using a Python keyword for a variable name.

2. Check that you have a colon at the end of the header of every compound state-
ment, including for, while, if, and def statements.

3. Check that indentation is consistent. You may indent with either spaces or tabs
but it’s best not to mix them. Each level should be nested the same amount.

4. Make sure that any strings in the code have matching quotation marks.

5. If you have multiline strings with triple quotes (single or double), make sure
you have terminated the string properly. An unterminated string may cause an
invalid token error at the end of your program, or it may treat the following
part of the program as a string until it comes to the next string. In the second
case, it might not produce an error message at all!

6. An unclosed bracket—(, {, or [—makes Python continue with the next line as
part of the current statement. Generally, an error occurs almost immediately in
the next line.

7. Check for the classic = instead of == inside a conditional.

If nothing works, move on to the next section...

A.1.1 I can’t get my program to run no matter what I do.
If the compiler says there is an error and you don’t see it, that might be because you and
the compiler are not looking at the same code. Check your programming environment
to make sure that the program you are editing is the one Python is trying to run. If you
are not sure, try putting an obvious and deliberate syntax error at the beginning of the
program. Now run (or import) it again. If the compiler doesn’t find the new error, there
is probably something wrong with the way your environment is set up.

If this happens, one approach is to start again with a new program like “Hello, World!,”
and make sure you can get a known program to run. Then gradually add the pieces of
the new program to the working one.



A.2. Runtime errors 217

A.2 Runtime errors
Once your program is syntactically correct, Python can import it and at least start run-
ning it. What could possibly go wrong?

A.2.1 My program does absolutely nothing.
This problem is most common when your file consists of functions and classes but does
not actually invoke anything to start execution. This may be intentional if you only plan
to import this module to supply classes and functions.

If it is not intentional, make sure that you are invoking a function to start execution,
or execute one from the interactive prompt. Also see the “Flow of Execution” section
below.

A.2.2 My program hangs.
If a program stops and seems to be doing nothing, we say it is “hanging.” Often that
means that it is caught in an infinite loop or an infinite recursion.

• If there is a particular loop that you suspect is the problem, add a print statement
immediately before the loop that says “entering the loop” and another immedi-
ately after that says “exiting the loop.”
Run the program. If you get the first message and not the second, you’ve got an
infinite loop. Go to the “Infinite Loop” section below.

• Most of the time, an infinite recursion will cause the program to run for a while
and then produce a “RuntimeError: Maximum recursion depth exceeded” error.
If that happens, go to the “Infinite Recursion” section below.
If you are not getting this error but you suspect there is a problem with a recursive
method or function, you can still use the techniques in the “Infinite Recursion”
section.

• If neither of those steps works, start testing other loops and other recursive func-
tions and methods.

• If that doesn’t work, then it is possible that you don’t understand the flow of
execution in your program. Go to the “Flow of Execution” section below.

Infinite Loop

If you think you have an infinite loop and you think you know what loop is causing
the problem, add a print statement at the end of the loop that prints the values of the
variables in the condition and the value of the condition.

For example:



218 Appendix A. Debugging

while x > 0 and y < 0 :
# do something to x
# do something to y

print "x: ", x
print "y: ", y
print "condition: ", (x > 0 and y < 0)

Nowwhen you run the program, you will see three lines of output for each time through
the loop. The last time through the loop, the condition should be false. If the loop
keeps going, you will be able to see the values of x and y, and you might figure out
why they are not being updated correctly.

Infinite Recursion

Most of the time, an infinite recursion will cause the program to run for a while and
then produce a Maximum recursion depth exceeded error.

If you suspect that a function or method is causing an infinite recursion, start by check-
ing to make sure that there is a base case. In other words, there should be some condi-
tion that will cause the function or method to return without making a recursive invo-
cation. If not, then you need to rethink the algorithm and identify a base case.

If there is a base case but the program doesn’t seem to be reaching it, add a print
statement at the beginning of the function or method that prints the parameters. Now
when you run the program, you will see a few lines of output every time the function or
method is invoked, and you will see the parameters. If the parameters are not moving
toward the base case, you will get some ideas about why not.

Flow of Execution

If you are not sure how the flow of execution is moving through your program, add
print statements to the beginning of each function with a message like “entering func-
tion foo,” where foo is the name of the function.

Now when you run the program, it will print a trace of each function as it is invoked.

A.2.3 When I run the program I get an exception.

If something goes wrong during runtime, Python prints a message that includes the
name of the exception, the line of the program where the problem occurred, and a
traceback.

The traceback identifies the function that is currently running, and then the function
that invoked it, and then the function that invoked that, and so on. In other words, it



A.2. Runtime errors 219

traces the path of function invocations that got you to where you are. It also includes
the line number in your file where each of these calls occurs.

The first step is to examine the place in the program where the error occurred and see
if you can figure out what happened. These are some of the most common runtime
errors:

NameError: You are trying to use a variable that doesn’t exist in the current environ-
ment. Remember that local variables are local. You cannot refer to them from
outside the function where they are defined.

TypeError: There are several possible causes:

• You are trying to use a value improperly. Example: indexing a string, list,
or tuple with something other than an integer.

• There is a mismatch between the items in a format string and the items
passed for conversion. This can happen if either the number of items does
not match or an invalid conversion is called for.

• You are passing the wrong number of arguments to a function or method.
For methods, look at the method definition and check that the first param-
eter is self. Then look at the method invocation; make sure you are in-
voking the method on an object with the right type and providing the other
arguments correctly.

KeyError: You are trying to access an element of a dictionary using a key value that
the dictionary does not contain.

AttributeError: You are trying to access an attribute or method that does not exist.

IndexError: The index you are using to access a list, string, or tuple is greater than its
length minus one. Immediately before the site of the error, add a print statement
to display the value of the index and the length of the array. Is the array the right
size? Is the index the right value?

A.2.4 I added so many print statements I get inundated with out-
put.

One of the problems with using print statements for debugging is that you can end up
buried in output. There are two ways to proceed: simplify the output or simplify the
program.

To simplify the output, you can remove or comment out print statements that aren’t
helping, or combine them, or format the output so it is easier to understand.

To simplify the program, there are several things you can do. First, scale down the
problem the program is working on. For example, if you are sorting an array, sort a



220 Appendix A. Debugging

small array. If the program takes input from the user, give it the simplest input that
causes the problem.

Second, clean up the program. Remove dead code and reorganize the program to make
it as easy to read as possible. For example, if you suspect that the problem is in a deeply
nested part of the program, try rewriting that part with simpler structure. If you suspect
a large function, try splitting it into smaller functions and testing them separately.

Often the process of finding the minimal test case leads you to the bug. If you find that
a program works in one situation but not in another, that gives you a clue about what is
going on.

Similarly, rewriting a piece of code can help you find subtle bugs. If you make a change
that you think doesn’t affect the program, and it does, that can tip you off.

A.3 Semantic errors
In some ways, semantic errors are the hardest to debug, because the compiler and the
runtime system provide no information about what is wrong. Only you know what the
program is supposed to do, and only you know that it isn’t doing it.

The first step is to make a connection between the program text and the behavior you
are seeing. You need a hypothesis about what the program is actually doing. One of
the things that makes that hard is that computers run so fast.

You will often wish that you could slow the program down to human speed, and with
some debuggers you can. But the time it takes to insert a few well-placed print state-
ments is often short compared to setting up the debugger, inserting and removing break-
points, and “walking” the program to where the error is occurring.

A.3.1 My program doesn’t work.

You should ask yourself these questions:

• Is there something the program was supposed to do but which doesn’t seem to
be happening? Find the section of the code that performs that function and make
sure it is executing when you think it should.

• Is something happening that shouldn’t? Find code in your program that performs
that function and see if it is executing when it shouldn’t.

• Is a section of code producing an effect that is not what you expected? Make sure
that you understand the code in question, especially if it involves invocations to
functions or methods in other Python modules. Read the documentation for the
functions you invoke. Try them out by writing simple test cases and checking
the results.



A.3. Semantic errors 221

In order to program, you need to have a mental model of how programs work. If you
write a program that doesn’t do what you expect, very often the problem is not in the
program; it’s in your mental model.

The best way to correct your mental model is to break the program into its components
(usually the functions and methods) and test each component independently. Once you
find the discrepancy between your model and reality, you can solve the problem.

Of course, you should be building and testing components as you develop the program.
If you encounter a problem, there should be only a small amount of new code that is
not known to be correct.

A.3.2 I’ve got a big hairy expression and it doesn’t do what I ex-
pect.

Writing complex expressions is fine as long as they are readable, but they can be hard to
debug. It is often a good idea to break a complex expression into a series of assignments
to temporary variables.

For example:

self.hands[i].addCard(self.hands[self.findNeighbor(i)].popCard())

This can be rewritten as:

neighbor = self.findNeighbor(i)
pickedCard = self.hands[neighbor].popCard()
self.hands[i].addCard(pickedCard)

The explicit version is easier to read because the variable names provide additional
documentation, and it is easier to debug because you can check the types of the inter-
mediate variables and display their values.

Another problem that can occur with big expressions is that the order of evaluation
may not be what you expect. For example, if you are translating the expression x

2π into
Python, you might write:

y = x / 2 * math.pi

That is not correct because multiplication and division have the same precedence and
are evaluated from left to right. So this expression computes xπ/2.

A good way to debug expressions is to add parentheses to make the order of evaluation
explicit:

y = x / (2 * math.pi)

Whenever you are not sure of the order of evaluation, use parentheses. Not only will
the program be correct (in the sense of doing what you intended), it will also be more
readable for other people who haven’t memorized the rules of precedence.



222 Appendix A. Debugging

A.3.3 I’ve got a function or method that doesn’t return what I ex-
pect.

If you have a return statement with a complex expression, you don’t have a chance to
print the return value before returning. Again, you can use a temporary variable. For
example, instead of:

return self.hands[i].removeMatches()

you could write:

count = self.hands[i].removeMatches()
return count

Now you have the opportunity to display the value of count before returning.

A.3.4 I’m really, really stuck and I need help.

First, try getting away from the computer for a few minutes. Computers emit waves
that affect the brain, causing these effects:

• Frustration and/or rage.

• Superstitious beliefs (“the computer hates me”) and magical thinking (“the pro-
gram only works when I wear my hat backward”).

• Random-walk programming (the attempt to program by writing every possible
program and choosing the one that does the right thing).

If you find yourself suffering from any of these symptoms, get up and go for a walk.
When you are calm, think about the program. What is it doing? What are some possible
causes of that behavior? When was the last time you had a working program, and what
did you do next?

Sometimes it just takes time to find a bug. We often find bugs when we are away from
the computer and let our minds wander. Some of the best places to find bugs are trains,
showers, and in bed, just before you fall asleep.

A.3.5 No, I really need help.

It happens. Even the best programmers occasionally get stuck. Sometimes you work
on a program so long that you can’t see the error. A fresh pair of eyes is just the thing.

Before you bring someone else in, make sure you have exhausted the techniques de-
scribed here. Your program should be as simple as possible, and you should be working



A.3. Semantic errors 223

on the smallest input that causes the error. You should have print statements in the ap-
propriate places (and the output they produce should be comprehensible). You should
understand the problem well enough to describe it concisely.

When you bring someone in to help, be sure to give them the information they need:

• If there is an error message, what is it and what part of the program does it
indicate?

• What was the last thing you did before this error occurred? What were the last
lines of code that you wrote, or what is the new test case that fails?

• What have you tried so far, and what have you learned?

When you find the bug, take a second to think about what you could have done to find
it faster. Next time you see something similar, you will be able to find the bug more
quickly.

Remember, the goal is not just to make the program work. The goal is to learn how to
make the program work.


