

How to Think Like a
(Python 3.0) Programmer

Version 0.10.0

How to Think Like a
(Python 3.0) Programmer

Version 0.10.0

Allen Downey
Mark Goadrich

Copyright © 2007 Allen Downey, 2009 Mark Goadrich.
Printing history:

April 2002: First edition ofHow to Think Like a Computer Scientist

August 2007: Major revision, changed title tHow to Think Like a (Python) Programmer
August 2008: Restructured and revised by Mark Goadrich

Summer 2009: Edited for Python 3.0 by Mark Goadrich

Permission is granted to copy, distribute, and/or modify this documerdruhd terms of the
GNU Free Documentation License, Version 1.1 or any later version fgloliby the Free Soft-
ware Foundation; with no Invariant Sections, no Front-Cover Textd,véth no Back-Cover
Texts.

The GNU Free Documentation License is available framwv.gnu.org or by writing to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MADB2B07, USA.

The original form of this book isN[EX source code. Compiling thi$TeX source has the effect
of generating a device-independent representation of a textboolk) sduiche converted to other
formats and printed.

The BTEX source for this book is available from
http://mark.goadrich.com/courses/csc207f09/book

Preface

The strange history of this book

In January 1999 | was preparing to teach an introductorynaraging class in Java. |
had taught it three times and | was getting frustrated. THeréarate in the class was
too high and even for students who succeeded, the overalldéachievement was too
low.

One of the problems | saw was the books. | had tried threerdiftedoooks (and read
a dozen more), and they all had the same problems. They werbigo with too
much unnecessary detail about Java, and not enough highgleidance about how to
program. And they all suffered from the trap door effect:ytheould start out very
gradual and easy, and then somewhere around Chapter 5, tthenheould fall out.
The students would get too much new material, too fast, anouldvspend the rest of
the semester picking up the pieces.

Two weeks before the first day of classes, | decided to writ@wry book. | wrote one
10-page chapter a day for 13 days. | made some revisions oidand then sent it
out to be photocopied.

My goals were:

« Keep it short. It is better for students to read 10 pages tioamead 50 pages.

» Be careful with vocabulary. | tried to minimize the jargamdadefine each term
at first use.

« Build gradually. To avoid trap doors, | took the most diffictopics and split
them into a series of small steps.

« It's not about the language; it's about programming. |umgd the minumum
useful subset of Java and left out the rest.

| needed a title, so on a whim | chos®w to Think Like a Computer Scientist

My first version was rough, but it worked. Students did thedieg, and they under-
stood enough that | could spend class time on the hard tdpeteresting topics and
(most important) letting the students practice.

viii Chapter 0. Preface

As a user and advocate of free software, | believe in the idagaBnin Franklin ex-
pressed:

“As we enjoy great Advantages from the Inventions of otheses should
be glad of an Opportunity to serve others by any Inventionwbpand
this we should do freely and generously.”

So | released the book under the GNU Free Documenation Lecertsch allows users
to copy, modify, and distribute the book.

What happened next is the cool part. Jeff Elkner, a high sctezmher in Virginia,
adopted my book and translated it into Python. He sent me wn @bpis translation,
and | had the unusual experience of learning Python by rgadinown book.

Jeff and | revised the book, incorporated a case study bysGhelyers, and released
How to Think Like a Computer Scientist: Learning with Pythaiso under the GNU
Free Documenation License.

At the same time, my wife and | started Green Tea Press, whsthhdites several of
my books electronically, and selow to Thinkin hard copy.

I have been teaching with this book for more than five years aod | have done a lot
more Python programming. | still like the structure of thekpbut for some time |
have felt the need to make changes:

» Some of the examples in the first edition work better thamisthin my classes
| have discarded the less effective ones and developed yprents.

» There are only a few exercises in the first edition. Now | hive years of
quizzes, exams and homeworks to choose from.

* | have been programming in Python for a while now and havetebapprecia-
tion of idiomatic Python. The book is still about programmuimot Python, but
now | think the book gets more leverage from the language.

At the same time, Jeff has been working on his own secondaeditustomized for his
classes. Rather than cram everything into one book (whighlmeahow other books
got so big), we decided to work on different versions. They lawth under the Free
Documentation License, so users can choose one or combieeiah&rom both.

For my version, | am using the revised titkow to Think Like a (Python) Programmer
This is a more modest goal than the original, but it might beenazcurate.

Allen B. Downey
Needham MA

Allen Downey is a Professor of Computer Science at the FiaWkl Olin College of
Engineering.

ix

| began my career teaching computer science in graduat®lsahthe University of
Wisconsin, using Java. While my students were learning,tltfere was too much
syntax in the way of the core concepts of problem solving, lafiodnd Java cumber-
some to teach in any way except focusing on Objects FirsterAdtfew discussions
with colleagues, | decided to move to Python, and began hapkir textbook.

When | found Allen’s text online, | first noticed the brevity cafiocus, along with
constant reinforcement of good debugging techniques. Amelw discovered that it
was open source, | jumped at using it in my CS1 course. | hauggied with using
texts before where the topic sequence does not match myr@nets however, with
this text | was free to edit and rearrange to suit my needs.

The text was very well received by my students, who appredittte constant small
inline examples, as well as the free price compared to tekibtor their other courses.
As of this summer (2009) | am revising the text to use Pyth@n &nd will be using
this new version in the fall.

Mark Goadrich
Shreveport LA

Mark Goadrich is an Assistant Professor of Computer Sciah@entenary College of
Louisiana and the Broyles Eminent Scholars Chair of Contjmutal Mathematics.

Contributor List

To paraphrase the philosophy of the Free Software Founddties book is free like

free speech, but not necessarily free like free pizza. ltecabout because of a col-
laboration that would not have been possible without the Giéke Documentation
License. So we thank the Free Software Foundation for dpireddhis license and, of
course, making it available to us.

We also thank the more than 100 sharp-eyed and thoughtfdéreavho have sent us
suggestions and corrections over the past few years. Impihiea free software, we
decided to express our gratitude in the form of a contriblisbr Unfortunately, this
list is not complete, but we are doing our best to keep it upate d

If you have a chance to look through the list, you should redahat each person here
has spared you and all subsequent readers from the confafséotechnical error or a
less-than-transparent explanation, just by sending usea no

Impossible as it may seem after so many corrections, theyestilabe errors in this
book. If you should stumble across one, please check theeowdirsion of the book at
http://thinkpython.com , Which is the most up-to-date version. If the error has not
been corrected, please take a minute to send us enfegtabck@thinkpython.com

If we make a change due to your suggestion, you will appedramext version of the
contributor list (unless you ask to be omitted). Thank you!

X Chapter 0. Preface

Contributors: Lloyd Hugh Allen, Yvon Boulianne, Fred Bremmer, JoGahen, Michael Con-
lon, Benoit Girard, Courtney Gleason, Katherine Smith, Lee Harr, dataglin, David Ker-
shaw, Eddie Lam, Man-Yong Lee, David Mayo, Chris McAloon, Matthewldelter, Simon
Dicon Montford, John Ouzts, Kevin Parks, David Pool, Michael SchmitthiR Shaw, Paul
Sleigh, Craig T. Snydal, lan Thomas, Keith Verheyden, Peter Winsta@hays Wrobel, Moshe
Zadka, Christoph Zwerschke, James Mayer, Hayden McAfee, |Agml, Tauhidul Hoque,
Lex Berezhny, Dr. Michele Alzetta, Andy Mitchell, Kalin Harvey, Christepl. Smith, David
Hutchins, Gregor Lingl, Julie Peters, Florin Oprina, D. J. Webre, Kem\Wever, Curtis Yanko,
Ben Logan, Jason Armstrong, Louis Cordier, Brian Cain, Rob Blaeikn<Philippe Rey, Jason
Mader,Jan Gundtofte-Bruun, Abel David, Alexis Dinno, Charles EBnaRoger Sperberg, Sam
Bull, Andrew Cheung, C. Corey Capel, Alessandra, Wim Champagoeglas Wright, Jared
Spindor, Lin Peiheng, Ray Hagtvedt, Torsteiiidch, Inga Petuhhov, Arne Babenhauserheide,
Mark E. Casida, Scott Tyler, Gordon Shephard, Andrew TurnepfHabart, Daryl Hammond,
Sarah Zimmerman, George Sass, Brian Bingham, Leah Engelbedrk-éoe Funke, and Chao-
chao Chen.

Contents

Preface vii

| Sequential Programming 1

1 The way of the program 3
1.1 The Python programming language 3
1.2 Whatisaprogram? 5
1.3 Algorithms 5
1.4 Whatisdebugging? 6
1.5 Formaland naturallanguages 8
1.6 Thefirstprogram 9
1.7 Debugging. 10
1.8 Glossary 10
1.9 EXerciSes e 12

2 Variables, expressions and statements 13
21 Valuesandclasses 13
22 Variables. 14
2.3 Variablenamesandkeywords 15
24 Statements 16
25 Operatorsandoperands, 16

Xii

Contents

2.6
2.7
2.8
2.9
2.10
2.11
2.12

Floor Division and Modulus operator

Expressions

Order of operations
Comments
Debugging
Glossary

Exercises

Using Functions

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Strings

4.1

4.2 Astringis a sequence

43 |
4.4
4.5
4.6

4.7 string methods
4.8 Glossary
4.9

Function calls

Type conversion functions
Keyboard input
Math functions
Composition.
Debugging.
Glossary

Exercises

Characters

en ..o oo

String operations

String slices

Strings are immutable

Exercises

Contents Xiii

Il Decisions, Detours and Data Structures 35

5 Conditionals 37
51 Boolean expressions.o 37
5.2 Logicaloperators 38
5.3 Conditional execution o 38
5.4 Alternative execution 39
55 Chainedconditionals 39
5.6 Nested conditionals 40
5.7 Stringcomparison 40
58 Randomnumbers 41
59 Debugging. 42
510 Glossary 42
5,11 EXEerCiSES i i i 43

6 Writing functions 45
6.1 Addingnewfunctions 45
6.2 Definitonsanduses 46
6.3 Flowofexecution, 47
6.4 Whyfunctions? 48
6.5 Parametersand arguments 48
6.6 Variables and parametersarelocal 49
6.7 Stackdiagrams 50
6.8 Fruitful functions and void functions 51
6.9 Returnvalues 52
6.10 Booleanfunctions 53
6.11 Incremental development L 53
6.12 docstring 56
6.13 Composition 56
6.14 Debugging e 57
6.15 Glossary e 57
6.16 EXErCiSeS 59

Xiv

Contents

7

Iteration

7.1 Multiple assignment
7.2 Updating variables
7.3 Thewhile statement
7.4 Sentinel loops

7.5 Square roots

7.6

7.7

78 Exercises
Lists

8.1 Alistis a sequence
8.2 Lists are mutable
8.3 List operations

8.4

8.5

8.6 Deleting elements
8.7 Objects and values
8.8

8.9 Listarguments

8.10 Copying lists

8.11 Lists and strings
For Loops

9.1 Traversing a string
9.2 Traversing a list

9.3 Afind function

9.4 Looping and counting
9.5 Thein operator

Debugging

Glossary

Listslices

Listmethods

Aliasing

61

Contents XV
9.6 break 85
9.7 Map, filterandreduce 85
9.8 Debugging. 87
9.9 Glossary 88
9.10 EXEerCiSeS i 89

10 Recursion 91
10.1 ReCUrSiON i 91
10.2 Stack diagrams for recursive functions 92
10.3 Infiniterecursion 93
10.4 MOrerecursion o i it e 94
10.5 Leapoffaith. 96
10.6 Onemoreexample 96
10.7 Checkingtypes e 97
108 Hints. 98
10.9 Debugging 99
10.10 Glossary v oo e e 100
10.11 EXerciSes o o i i 101

11 Files 103
11,1 Persistence. o 103
11.2 Readingandwriting 103
11.3 Formatoperator 104
11.4 Filenamesandpaths. 105
11.5 Catchingexceptions, 107
11.6 Pickling e 108
11.7 Glossary o e 108

XVi

Contents

12 Dictionaries

13

14

12.1
12.2
12.3
12.4
125
12.6
12.7

Object-Oriented Programming

Classes and objects

131
13.2
13.3
134
13.5
13.6
13.7
13.8
13.9

Classes and functions

14.1
14.2
14.3
14.4
145
14.6

Dictionary as a set of counters
Looping and dictionaries
Reverse lookup

Dictionaries and lists

Debugging

Glossary

Exercises

User-defined types

Attributes

Rectangles

Instances as return values

Objects are mutable

Copying

Debugging

Glossary

Exercises

Prototyping versus planning

Glossary

Exercises

Contents XVii

15 Classes and methods 137
15.1 Object-orientedfeatures 137
15.2 oprint time e 138
15.3 Anotherexample 139
15.4 A morecomplicatedexample 140
155 Thenit method 141
156 Thestr method 141
15.7 Operatoroverloading 142
15.8 Type-baseddispatch 143
15.9 Polymorphism L 144
15.10 EXErCiSES ¢ v i i it 145
15.11 Glossary v o i e e 145

16 Inheritance 147
16.1 Cardobjects 147
16.2 Classattributes 148
16.3 Comparingcards 150
16.4 DeCks e 151
16.5 Printingthedeck 151
16.6 Add, remove, shuffleandsort 215
16.7 Inheritance. 153
16.8 Classdiagrams 155
16.9 Glossary 155
16.10 EXercises 156

IV Appendies 159

A Debugging 161
Al Syntaxerrors e e e e 161
A2 Runtimeerrors 163

A3 SemantiCerrors i e 166

XViii Contents

Part |

Sequential Programming

Chapter 1

The way of the program

The goal of this book is to teach you to think like a computéersiist. This way of
thinking combines some of the best features of mathematitgineering, and natu-
ral science. Like mathematicians, computer scientistfarseal languages to denote
ideas (specifically computations). Like engineers, thesigtethings, assembling com-
ponents into systems and evaluating tradeoffs among attees. Like scientists, they
observe the behavior of complex systems, form hypotheseddgeat predictions.

The single most important skill for a computer scientigblisblem solving. Problem
solving means the ability to formulate problems, think tikedly about solutions, and
express a solution clearly and accurately. As it turns dé,grocess of learning to
program is an excellent opportunity to practice problefwviag skills. That's why this
chapter is called, “The way of the program.”

On one level, you will be learning to program, a useful skylitself. On another level,
you will use programming as a means to an end. As we go aloagettd will become
clearer.

1.1 The Python programming language

The programming language you will be learning is PythonhBaytis an example of a
high-level language other high-level languages you might have heard of are G, C+
Perl, and Java.

As you might infer from the name “high-level language,” theare alsdow-level
languages sometimes referred to as “machine languages” or “assetabbuages.”
Loosely speaking, computers can only execute programgewrin low-level lan-
guages. So programs written in a high-level language haveetprocessed before
they can run. This extra processing takes some time, whialsisall disadvantage of
high-level languages.

4 Chapter 1. The way of the program

But the advantages are enormous. First, it is much easieogrgm in a high-level
language. Programs written in a high-level language tad® tiene to write, they are
shorter and easier to read, and they are more likely to becor6econd, high-level
languages arportable, meaning that they can run on different kinds of computetk wi
few or no modifications. Low-level programs can run on onlg &nd of computer
and have to be rewritten to run on another.

Due to these advantages, almost all programs are writteiglinlavel languages. Low-
level languages are used only for a few specialized apjitat

Two kinds of programs process high-level languages intelewgl languagesinter-
preters and compilers. An interpreter reads a high-level program and executes it,
meaning that it does what the program says. It processesdbegm a little at a time,
alternately reading lines and performing computations.

%
SOURCE INTERPRETER OUTPUT
CODE .

/o

A compiler reads the program and translates it completelgrbehe program starts
running. In this case, the high-level program is calledgberce code and the trans-
lated program is called thabject codeor theexecutable Once a program is compiled,
you can execute it repeatedly without further translation.

SOURCE COMPILER OBJECT EXECUTOR OUTPUT
CODE _| cobE |

———O

Python is considered an interpreted language becauserPgthgrams are executed
by an interpreter. There are two ways to use the interprigttractive mode and script
mode. In interactive mode, you type Python programs andrteggreter prints the
result:

Python 3.0.1+ (r301:69556, Apr 15 2009, 17:25:52)

Type "help", "copyright", "credits" or "license" for more i nformation.
>>> print(l + 1)
2

The first two lines in this example are displayed by the inmetey when it starts up.
The third line starts witk»>>, which is theprompt the interpreter uses to indicate that
itis ready. If you typeprint(1 + 1) , the interpreter replie2.

Alternatively, you can store code in a file and use the intgsrto execute the contents
of the file. Such a file is called script. For example, you could use a text editor to
create a file namedinsdale.py with the following contents:

1.2. What is a program? 5

print(1 + 1)
By convention, Python scripts have names that end ywjth

To execute the script, you have to tell the interpreter thraenaf the file. In a UNIX
command window, you would typgython dinsdale.py . In other development en-
vironments, the details of executing scripts are different

Working in interactive mode is convenient for testing sméices of code because you
can type and execute them immediately. But for anything rtfreia a few lines, you
should save your code as a script so you can modify and exi¢utde future.

1.2 Whatis a program?

A program is a sequence of instructions that specifies how to perforongatation.

The computation might be something mathematical, suchlamga system of equa-
tions or finding the roots of a polynomial, but it can also be/mlsolic computation,
such as searching and replacing text in a document or (glargough) compiling a
program.

The details look different in different languages, but a fegic instructions appear in
just about every language:

input: Get data from the keyboard, a file, or some other device.
output: Display data on the screen or send data to a file or other device
math: Perform basic mathematical operations like addition anliptication.

conditional execution: Check for certain conditions and execute the appropriate se
quence of statements.

repetition: Perform some action repeatedly, usually with some variatio

Believe it or not, that's pretty much all there is to it. Evgmpgram you've ever used,
no matter how complicated, is made up of instructions thak faretty much like these.
So you can think of programming as the process of breakingya, laomplex task into
smaller and smaller subtasks until the subtasks are simplayh to be performed with
one of these basic instructions.

1.3 Algorithms

An algorithm is a mechanical process for solving a category of problems.

It is not easy to define an algorithm. It might help to starthwsbmething that is
not an algorithm. When you learned to multiply single-digitwbers, you probably

6 Chapter 1. The way of the program

memorized the multiplication table. In effect, you memedzL00 specific solutions.
That kind of knowledge is not algorithmic.

But if you were “lazy,” you probably cheated by learning a feigks. For example,
to find the product ofh and 9, you can writén — 1 as the first digit and 18 n as the

second digit. This trick is a general solution for multiplgiany single-digit number
by 9. That's an algorithm!

Similarly, the techniques you learned for addition withrgarg, subtraction with bor-
rowing, and long division are all algorithms. One of the @uaeristics of algorithms
is that they do not require any intelligence to carry out. yTéie mechanical processes
in which each step follows from the last according to a singelieof rules.

In my opinion, it is embarrassing that humans spend so muoh iti school learning
to execute algorithms that, quite literally, require neelligence.

On the other hand, the process of designing algorithms &dsting, intellectually
challenging, and a central part of what we call programming.

Some of the things that people do naturally, without diffigudr conscious thought,
are the hardest to express algorithmically. Understandatgral language is a good
example. We all do it, but so far no one has been able to exptainwe do it, at least

not in the form of an algorithm.

1.4 What is debugging?

Programming is error-prone. For whimsical reasons, prograg errors are called
bugsand the process of tracking them down is callethugging

Three kinds of errors can occur in a program: syntax errargjme errors, and seman-
tic errors. It is useful to distinguish between them in orttetrack them down more
quickly.

1.4.1 Syntax errors

Python can only execute a program if the syntax is correberatise, the interpreter
displays an error messag8yntax refers to the structure of a program and the rules
about that structure. For example, in English, a sentencat bregin with a capital
letter and end with a period. this sentence contaissgax error. So does this one

For most readers, a few syntax errors are not a significafigmg which is why we
can read the poetry of e. e. cummings without spewing err@sages. Python is not
so forgiving. If there is a single syntax error anywhere imityprogram, Python will
print an error message and quit, and you will not be able toyour program. During
the first few weeks of your programming career, you will priolgaspend a lot of time
tracking down syntax errors. As you gain experience, youmilke fewer errors and
find them faster.

1.4. What is debugging? 7

1.4.2 Runtime errors

The second type of error is a runtime error, so called bectaserror does not appear
until after the program has started running. These err@sablso callecexceptions
because they usually indicate that something exceptiama lpad) has happened.

Runtime errors are rare in the simple programs you will sekerfirst few chapters, so
it might be a while before you encounter one.

1.4.3 Semantic errors

The third type of error is thesemantic error. If there is a semantic error in your
program, it will run successfully, in the sense that the cot@pwill not generate any
error messages, but it will not do the right thing. 1t will dansething else. Specifically,
it will do what you told it to do.

The problem is that the program you wrote is not the programwanted to write.

The meaning of the program (its semantics) is wrong. ldgntif semantic errors can
be tricky because it requires you to work backward by lookatghe output of the
program and trying to figure out what it is doing.

1.4.4 Experimental debugging

One of the most important skills you will acquire is debuggirAlthough it can be
frustrating, debugging is one of the most intellectualtyrichallenging, and interesting
parts of programming.

In some ways, debugging is like detective work. You are amtfrd with clues, and
you have to infer the processes and events that led to thiksrgeu see.

Debugging is also like an experimental science. Once yoe havdea about what is
going wrong, you modify your program and try again. If youphyhesis was correct,
then you can predict the result of the modification, and yde ta step closer to a
working program. If your hypothesis was wrong, you have tmeap with a new one.
As Sherlock Holmes pointed out, “When you have eliminatedripossible, whatever
remains, however improbable, must be the truth.” (A. Conagl® The Sign of Four

For some people, programming and debugging are the sange thimat is, program-
ming is the process of gradually debugging a program untbis what you want.
The idea is that you should start with a program that dmesethingand make small
modifications, debugging them as you go, so that you always &avorking program.

For example, Linux is an operating system that containsséeds of lines of code,
but it started out as a simple program Linus Torvalds usedpoee the Intel 80386
chip. According to Larry Greenfield, “One of Linus’s earli@mojects was a program
that would switch between printing AAAA and BBBB. This latevolved to Linux.”
(The Linux Users’ Guid8eta Version 1)

8 Chapter 1. The way of the program

Later chapters will make more suggestions about debuggidgother programming
practices.

1.5 Formal and natural languages

Natural languagesare the languages people speak, such as English, Spanégh, an
French. They were not designed by people (although pegpte tmpose some order
on them); they evolved naturally.

Formal languagesare languages that are designed by people for specific afiplis.
For example, the notation that mathematicians use is a fdamguage that is partic-
ularly good at denoting relationships among numbers andsisn Chemists use a
formal language to represent the chemical structure of cutds. And most impor-
tantly:

Programming languages are formal languages that have beeneed
signed to express computations.

Formal languages tend to have strict rules about syntaxefample, 3-3 =6 is a
syntactically correct mathematical statement, but=33%$6 is not.H,O is a syntacti-
cally correct chemical formula, byZzis not.

Syntax rules come in two flavors, pertainingttkens and structure. Tokens are the
basic elements of the language, such as words, numbershamiaal elements. One
of the problems with 3 = 3$6 is that $ is not a legal token in mathematics (at least
as far as | know). SimilarlypZzis not legal because there is no element with the
abbreviationzz

The second type of syntax error pertains to the structurestd#ftement; that is, the way
the tokens are arranged. The statement33$6 is illegal because even thoughand
= are legal tokens, you can’t have one right after the othemil&ily, in a chemical
formula the subscript comes after the element name, notdefo

Exercise 1.1. Write a well-structured English sentence with invalid tagén it. Then
write another sentence with all valid tokens but with ingtatructure.

When you read a sentence in English or a statement in a formglae, you have to
figure out what the structure of the sentence is (althoughnataral language you do
this subconsciously). This process is calesing.

For example, when you hear the sentence, “The penny drédpgadunderstand that
“the penny” is the subject and “dropped” is the predicate.c®wou have parsed a
sentence, you can figure out what it means, or the semantibe s€ntence. Assuming
that you know what a penny is and what it means to drop, you uwmitlerstand the
general implication of this sentence.

Although formal and natural languages have many featuresinmon—tokens, struc-
ture, syntax, and semantics—there are many differences:

1.6. The first program 9

ambiguity: Natural languages are full of ambiguity, which people deigh\wy using
contextual clues and other information. Formal languagesdasigned to be
nearly or completely unambiguous, which means that angrseamt has exactly
one meaning, regardless of context.

redundancy: In order to make up for ambiguity and reduce misunderstaysjinat-
ural languages employ lots of redundancy. As a result, they#ien verbose.
Formal languages are less redundant and more concise.

literalness: Natural languages are full of idiom and metaphor. If | sayhéTpenny
dropped,” there is probably no penny and nothing droppif@rmal languages
mean exactly what they say.

People who grow up speaking a natural language—everyoner-oéiee a hard time
adjusting to formal languages. In some ways, the differ&ete@een formal and natural
language is like the difference between poetry and proganbte so:

Poetry: Words are used for their sounds as well as for their meanimg ttee whole
poem together creates an effect or emotional response. cAityiis not only
common but often deliberate.

Prose: The literal meaning of words is more important, and the $tmgccontributes
more meaning. Prose is more amenable to analysis than godtistill often
ambiguous.

Programs: The meaning of a computer program is unambiguous and lit@nal can
be understood entirely by analysis of the tokens and streictu

Here are some suggestions for reading programs (and ottmalftanguages). First,
remember that formal languages are much more dense tharalniatguages, so it
takes longer to read them. Also, the structure is very ingmdytso it is usually not a
good idea to read from top to bottom, left to right. Insteadyh to parse the program
in your head, identifying the tokens and interpreting thhacttire. Finally, the details
matter. Small errors in spelling and punctuation, which gam get away with in
natural languages, can make a big difference in a formaliage.

1.6 The first program

Traditionally, the first program you write in a new languagealled “Hello, World!”
because all it does is display the words, “Hello, World!” Iytton, it looks like this:

print(' Hello, World! ")

This is an example of therint function , which doesn't actually print anything on
paper. It displays a value on the screen. In this case, thé igshe words

1This idiom means that someone realized something after a pefrimmhfusion.

10 Chapter 1. The way of the program

Hello, World!

The quotation marks in the program mark the beginning anddérttie text to be
displayed; they don’t appear in the result.

Some people judge the quality of a programming language &sitmplicity of the
“Hello, World!” program. By this standard, Python does abasiwell as possible.

1.7 Debugging

Itis a good idea to read this book in front of a computer so yautey out the examples
as you go. You can run most of the examples in interactive mhgteif you put the
code into a script, it is easier to try out variations.

Whenever you are experimenting with a new feature, you shoytd make mistakes.
For example, in the “Hello, world!” program, what happengafi leave out one of the
guotation marks? What if you leave out both? What if you leavettoel parenthesis?
What if you spellprint wrong?

This kind of experiment helps you remember what you readsd helps with debug-
ging, because you get to know what the error messages medrhatbrings us to the
First Theorem of Debugging:

It is better to make mistakes now and on purpose than latenaciden-
tally.

Learning to debug can be frustrating, but it is one of the rimopbrtant parts of think-
ing like a computer scientist. At the end of each chaptertier debugging section,
like this one, with my thoughts (and theorems) of debuggirmpe they help!

1.8 Glossary

problem solving: The process of formulating a problem, finding a solution, erd
pressing the solution.

high-level language: A programming language like Python that is designed to bg eas
for humans to read and write.

low-level language: A programming language that is designed to be easy for a com-
puter to execute; also called “machine language” or “as$etabguage.”

portability: A property of a program that can run on more than one kind ofngdar.

interpret: To execute a program in a high-level language by translatioge line at
atime.

1.8. Glossary 11

compile: To translate a program written in a high-level language &atow-level lan-
guage all at once, in preparation for later execution.

source code: A program in a high-level language before being compiled.
object code: The output of the compiler after it translates the program.
executable: Another name for object code that is ready to be executed.

prompt: Characters displayed by the interpreter to indicate theit@ady to take input
from the user.

script: A program stored in a file (usually one that will be interphte
program: A set of instructions that specifies a computation.
algorithm: A general process for solving a category of problems.
bug: An error in a program.

debugging: The process of finding and removing any of the three kinds ofj@m-
ming errors.

syntax: The structure of a program.

syntax error: An error in a program that makes it impossible to parse (aacetbre
impossible to interpret).

exception: An error that is detected while the program is running.
semantics: The meaning of a program.

semantic error: An error in a program that makes it do something other thart thiea
programmer intended.

natural language: Any one of the languages that people speak that evolvedaiigtur

formal language: Any one of the languages that people have designed for specifi
purposes, such as representing mathematical ideas or temgograms; all
programming languages are formal languages.

token: One of the basic elements of the syntactic structure of arpmganalogous to
a word in a natural language.

parse: To examine a program and analyze the syntactic structure.

print function: A function that causes the Python interpreter to displaylaevan the
screen.

12 Chapter 1. The way of the program

1.9 Exercises

Exercise 1.2.Use a web browser to go ot t p: / / pyt hon. or g. This page con-
tains a lot of information about Python, pointers to Pythetated pages, and it gives
you the ability to search the Python documentation.

For example, if you entarint in the search window, the first link that appears is the
documentation of thprint statement. At this point, not all of it will make sense to
you, but it is good to know where it is!

Exercise 1.3. Start the Python interpreter and typelp() to start the online help
utility. Alternatively, you can typkelp(print) to get information about a particular
topic, in this case therint statement. If this example doesn't work, you may need to
install additional Python documentation or set an envir@mtrvariable; unfortunately,
the details depend on your operating system and versiontbbRy

Chapter 2

Variables, expressions and
statements

2.1 Values and classes

A valueis one of the basic things a program works with, like a lettea aumber. The
values we have seen so far ar&, and’Hello, World!’

These values belong to different types désses 2 is an integer, andHello,
World" is a string, so-called because it contains a “string” of letters. Yond(a
the interpreter) can identify strings because they areosed in quotation marks.

The print function also works for integers.

>>> print(4)
4

If you are not sure what class a value has, the interpretetetiayou.

>>> type(' Hello, World! ")

<class 'str '>
>>> type(17)
<class 'int ' >

Not surprisingly, strings belong to the clags and integers belong to the claiss .
Less obviously, numbers with a decimal point belong to asctadledfloat , because
these numbers are represented in a format cbating-point.

>>> type(3.2)
<class ' float ' >

14 Chapter 2. Variables, expressions and statements

What about values lik&l7 and’3.2’ ? They look like numbers, but they are in
quotation marks like strings.

>>> type(' 17")
<class 'str ' >
>>> type(' 3.2")
<class 'str ' >

They're strings.

When you type a large integer, you might be tempted to use cenbeiaveen groups
of three digits, as ii,000,000 . This is not a legal integer in Python, but it is legal:

>>> print(1,000,000)
100

Well, that's not what we expected at all! Python interpre@0,000 as a comma-
separated sequence of integers which it prints with spasteglen.

This is the first example we have seen of a semantic error: dde cuns without
producing an error message, but it doesn’t do the “rightighi

2.2 \Variables

One of the most powerful features of a programming languagieel ability to manip-
ulatevariables. A variable is a name that refers to a value.

Theassignment statementreates new variables and gives them values:

>>> message = ' And now for something completely different
>>>n = 17
>>> pi = 3.1415926535897931

This example makes three assignments. The first assignsg &ira new variable
namedmessage ; the second gives the integér to n; the third assigns the (approxi-
mate) value oftto pi .

A common way to represent variables on paper is to write theenwith an arrow
pointing to the variable’s value. This kind of figure is cdllastate diagrambecause
it shows what state each of the variables is in (think of ih@sviariable’s state of mind).
This diagram shows the result of the assignment statements:

message —= 'And now for something completely different’

n— 17

pi —= 3.1415926535897931

The print function displays the value of a variable:

2.3. Variable names and keywords 15

>>> print(n)

17

>>> print(pi)
3.14159265359

The type of a variable is the type of the value it refers to.

>>> type(message)
<class 'str ' >
>>> type(n)

<class ‘'int ' >
>>> type(pi)

<class ' float ' >

2.3 \Variable names and keywords

Programmers generally choose names for their variablésatkameaningful—they
document what the variable is used for.

Variable names can be arbitrarily long. They can contairh betters and numbers,
but they have to begin with a letter. Although it is legal t@ wgppercase letters, by
convention we don’t. If you do, remember that case mattBrsce andbruce are
different variables.

The underscore charactel) €an appear in a name. It is often used in hames with
multiple words, such asy_name or airspeed _of _unladen _swallow .

If you give a variable an illegal name, you get a syntax error:

>>> 76trombones = ' big parade
SyntaxError: invalid syntax

>>> more@ = 1000000
SyntaxError: invalid syntax

>>> class = ' Advanced Theoretical Herpetology
SyntaxError; invalid syntax

76trombones s illegal because it does not begin with a letteore@is illegal because
it contains an illegal characte@ But what’s wrong wittclass ?

It turns out thatlass is one of Python'keywords. The interpreter uses keywords to
recognize the structure of the program, and they cannotdx assvariable names.

Python has 31 keywords:

and del from not while
as elif global or with
assert else if pass yield

16 Chapter 2. Variables, expressions and statements

break except import print
class exec in raise
continue finally is return
def for lambda try

You might want to keep this list handy. If the interpreter gdans about one of your
variable names and you don't know why, see if it is on this list

2.4 Statements

A statement is an instruction that the Python interpreterec@cute. We have seen two
kinds of statements: print and assignment.

When you type a statement on the command line, Python exetated displays the
result, if there is one.

A script usually contains a sequence of statements. If ikem@re than one statement,
the results appear one at a time as the statements execute.

For example, the script

print(1)
X =2
print(x)

produces the output

1
2

The assignment statement produces no output itself.

2.5 Operators and operands

Operators are special symbols that represent computations likeiaddind multipli-
cation. The values the operator is applied to are cafestands

The following examples demonstrate the arithmetic opesato

20432 hour-1 hour*60+minute minute/60 5**2 (5+9)*(15-7)

The symbolsg, -, and/ , and the use of parenthesis for grouping, mean in Python what
they mean in mathematics. The asteriski§ the symbol for multiplication, antf is
the symbol for exponentiation.

When a variable name appears in the place of an operand, filacesl with its value
before the operation is performed.

Addition, subtraction, multiplication, division and expentiation all do what you ex-
pect.

2.6. Floor Division and Modulus operator 17

2.6 Floor Division and Modulus operator
The operators above have some interesting behavior incotigun with integers.

>>> type(d + 2)
<class 'int '>
>>> type(4 - 2)
<class 'int '>
>>> type(4 * 2)
<class ‘'int ' >
>>> type(4 / 2)
<class ' float ' >

Division will always return a floating-point number, evenevhthe operands are inte-
gers. If we want an integer back from division, we will havegprformfloor division
with the symbol/ . Floor division chops off the fraction part, so in this exdenp
returns 2.

>>> 4 [2
2.0

>>> 4 | 2
2

The modulus operator works on integers and yields the remainder when the first
operand is divided by the second. In Python, the modulusabqeis a percent sign
(%9. The syntax is the same as for other operators:

>>> quotient = 7 // 3
>>> print(quotient)

2

>>> remainder = 7 % 3
>>> print(remainder)

1

So 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly usefut.example, you can check
whether one number is divisible by another-if6 yis zero, therx is divisible byy.

Also, you can extract the right-most digit or digits from amer. For examples %
10 yields the right-most digit ok (in base 10). Similarlyx % 100 yields the last two
digits.

2.7 Expressions

An expressionis a combination of values, variables, and operators. If type an
expression on the command line, the interpretexuatesit and displays the result:

18 Chapter 2. Variables, expressions and statements

>>> 1+ 1
2

Although expressions can contain values, variables, aachtqrs, not every expression
contains all of these elements. A value all by itself is cdesed an expression, and so
is a variable.

>>> 17
17

>>> X
2

In a script, an expression all by itself is a legal statemieut,it doesn’t do anything.
The following script produces no output at all:

17

3.2

' Hello, World! '
1+1

If you want the script to display the values of these expossiyou have to uggint
statements.

2.8 Order of operations

When more than one operator appears in an expression, theajrdealuation de-
pends on theules of precedence For mathematical operators, Python follows the
mathematical rules. The acronyPi=EMDAS is a useful way to remember them:

» Parentheses have the highest precedence and can be usezktari@xpression
to evaluate in the order you want. Since expressions in ffageas are evaluated
first,2 * (3-1) is 4, and(1+1)**(5-2) is 8. You can also use parentheses to
make an expression easier to read, asinute * 100) / 60 , even though it
doesn’t change the result.

» Exponentiation has the next highest precedenceda1 is 3 and not 4, and
3*1**3 is 3 and not 27.

» Multiplication andDivision (including Modulus) have the same precedence,
which is higher tharddition andSubtraction, which also have the same prece-
dence. S@*3-1 is 5, not4, and+4/2 is 8, not 5.

» Operators with the same precedence are evaluated fronolgfht. So in the
expressiordegrees / 2 * pi , the division happens first and the result is mul-
tiplied by pi . If you meant to divide by &, you should have used parentheses.

2.9. Comments 19

2.9 Comments

As programs get bigger and more complicated, they get mdfieutii to read. Formal
languages are dense, and it is often difficult to look at agoafocode and figure out
what it is doing, or why.

For this reason, it is a good idea to add notes to your progtaregplain in natural
language what the program is doing. These notes are aadienents and they are
marked with thet symbol:

compute the percentage of the hour that has elapsed
percentage = (minute * 100) / 60

In this case, the comment appears on a line by itself. You sanpait comments at the
end of a line:

percentage = (minute * 100) / 60 # percentage of an hour
Everything from thet to the end of the line is ignored—it has no effect on the program

Comments are most useful when they document non-obviotsésaof the code. Itis
reasonable to assume that the reader can figuntmaitthe code does; it is much more
useful to explairwhy.

This comment is redundant with the code and useless:
v=>5 # assign 5 to v

This comment contains useful information that is not in tbdec
v=5 # velocity in meters/second.

Good variable names can reduce the need for comments, lnkEmes can make
complex expressions hard to read, so there is a tradeoff.

2.10 Debugging

At this point the syntax error you are most likely to make isleyal variable name,
like class andyield (which are keywords) avdd’job andUS$ which contain illegal
characters.

If you put a space in a variable name, Python thinks it is twerapds without an
operator:

>>> bad name = 5
SyntaxError: invalid syntax

20 Chapter 2. Variables, expressions and statements

For syntax errors, the error messages don’t help much. Técommon messages are
SyntaxError; invalid syntax andSyntaxError: invalid token , heither of
which is very informative.

The run-time error you are most likely to make is a “use betteg” that is, trying to
use a variable before you have assigned a value. This caeh#pmu spell a variable
name wrong:

>>> principal = 327.68
>>> interest = principle * rate
NameError: name ' principle

is not defined
Variables names are case sensitiveBamis not the same amb.

At this point the most likely cause of a semantic error is theeo of operations. For
example, to evaluatéé, you might be tempted to write

>>>10/20 *a

But the division happens first, so you would @, which is not the same thing!
Unfortunately, there is no way for Python to know what yoweided to write, so in
this case you don’t get an error message; you just get thegnanswer.

And that brings us to the Second Theorem of Debugging:

The only thing worse than getting an error message is ndhgedh error
message.

2.11 Glossary

value: One of the basic units of data, like a number or string, thabgnmam manipu-
lates.

type: A function that tells us the category of a value. The classetave seen so far
are integers (clagst), floating-point numbers (cladigat), and strings (class
str).

integer: A class that represents whole numbers.

floating-point: A class that represents numbers with fractional parts.
string: A class that represents sequences of characters.

variable: A name that refers to a value.

statement: A section of code that represents a command or action. Sthiastate-
ments we have seen are assignments.

assignment: A statement that assigns a value to a variable.

2.12. Exercises 21

state diagram: A graphical representation of a set of variables and theegathey
refer to.

keyword: A reserved word that is used by the compiler to parse a prggramcannot
use keywords liké , def , andwhile as variable names.

operator: A special symbol that represents a simple computation kikkt@n, multi-
plication, or string concatenation.

operand: One of the values on which an operator operates.

floor division: The operation that divides two numbers and chops off theifnapart.

modulus operator: An operator, denoted with a percent sigf, that works on inte-
gers and yields the remainder when one number is divided dthan

expression: A combination of variables, operators, and values thaesgmts a single
result value.

evaluate: To simplify an expression by performing the operations ideorto yield a
single value.

rules of precedence:The set of rules governing the order in which expressions in-
volving multiple operators and operands are evaluated.

comment: Information in a program that is meant for other programngersanyone
reading the source code) and has no effect on the executibe pfogram.

2.12 Exercises

Exercise 2.1. Assume that we execute the following assignment statements
width = 17
height = 12.0
delimiter =

For each of the following expressions, write the value ofakpression and the class
(of the value of the expression).

1. width/2

2. height/3.0
3. width/2.0
4,1 +2*5

5. delimiter * 5
Exercise 2.2. Practice using the Python interpreter as a calculator:

22

Chapter 2. Variables, expressions and statements

* If you ran 10 kilometers in 45 minutes 30 seconds, what was eerage pace
in minutes per mile? What was your average speed in miles @ar?h(Hint:
there are 1.61 kilometers in a mile).

Chapter 3

Using Functions

3.1 Function calls

In the context of programming, fnction is a named sequence of statements that
performs a computation. When you define a function, you speled name and the
sequence of statements. Later, you can “call’ the functipndme. We have already
seen one example offanction call:

>>> type(' 32")
<class 'str '>

The name of the function iype . The expression in parentheses is calledatwgi-
ment of the function. The result, for this function, is the classhe argument, which
is a string.

It is common to say that a function “takes” an argument antufres” a result. The
result is called theeturn value.

When you call a function in interactive mode, the interprelisplays the return value,
but in a script a function call, all by itself, doesn’t displanything. To see the result,
you have to print it;

printtype(' 32"))

Or assign the return value to a variable, which you can pontuée for some other
purpose) later.

stereo = type(' 32')
print(stereo)

24 Chapter 3. Using Functions

3.2 Type conversion functions

Python provides built-in functions that convert valuesrirone class to another. The
int function takes any value and converts it to an integer if it cacomplains other-
wise:

>>> int(' 32")

32

>>> int(' Hello ")

ValueError: invalid literal for int(): Hello

int can convert floating-point values to integers, but it doesnind off; it chops off
the fraction part:

>>> int(3.99999)
3

>>> int(-2.3)

2

float converts integers and strings to floating-point numbers:

>>> float(32)

32.0

>>> float(' 3.14159 ')
3.14159

Finally, str converts its argument to a string:

>>> str(32)

' 3o

>>> str(3.14149)
' 3.14149 '

3.3 Keyboard input

The programs we have written so far are a bit rude in the sbaséiey accept no input
from the user. They just do the same thing every time.

Python provides a built-in function calledput that gets input from the keyboard.
When this function is called, the program stops and waitsHeruser to type some-
thing. When the user pressesturn or Enter, the program resumes amgut returns
what the user typed as a string.

>>> inp = input()

What are you waiting for?
>>> print(input)

What are you waiting for?

3.4. Math functions 25

Before callinginput , it is a good idea to print a prompt telling the user what taiinp
input takes a prompt as an argument;

>>> name = input(' What...is your name?\n ")
What...is your name?

Arthur, King of the Britons!

>>> print(hame)

Arthur, King of the Britons!

The sequenca at the end of the prompt represents a newline, which is aaipercir-
acter that causes a line break. That's why the user’s inpeas below the prompt.

If you expect the user to type an integer, you can try to cdnierreturn value tnt :

>>> prompt = ' What...is the airspeed velocity of an unladen swallow?\n
>>> speed = input(prompt)

What...is the airspeed velocity of an unladen swallow?

17

>>> int(speed)

17

But if the user types something other than a string of digits, get an exception:

>>> speed = input(prompt)

What...is the airspeed velocity of an unladen swallow?
What do you mean, an African or a European swallow?
>>> int(speed)

ValueError: invalid literal for int()

We will see how to handle this kind of error later.

3.4 Math functions

Python has a math module that provides most of the familidhemaatical functions.
A moduleis a file that contains a collection of related functions.

Before we can use the module, we have to import it:
>>> import math

This statement createsnaodule objectnamed math. If you print the module object,
you get some information about it:

>>> print(math)
<module ' math' from ' /usr/lib/python3.0/lib-dynload/mathmodule.so ">

The module object contains the functions and variables egfin the module. To
access one of the functions, you have to specify the nameghtdule and the name

26 Chapter 3. Using Functions

of the function, separated by a dot (also known as a periddis fbrmat is callediot
notation.

>>> ratio = signal_power / noise_power
>>> decibels = 10 * math.log10(ratio)

>>> radians = 0.7
>>> height = math.sin(radians)

The first example computes the logarithm base 10 of the sigrabise ratio. The
math module also provides a function callegl that computes logarithms base

The second example finds the sineafians . The name of the variable is a hint that
sin and the other trigonometric functions$, tan , etc.) take arguments in radians.
To convert from degrees to radians, divide by 360 and myltiyl 2rt

>>> degrees = 45

>>> radians = degrees / 360.0 * 2 * math.pi
>>> math.sin(radians)

0.707106781187

The expressiomath.pi gets the variablgi from the math module. Conveniently, the
value of this variable is an approximationmfaccurate to about 15 digits.

If you know your trigonometry, you can check the previousuteBy comparing it to
the square root of two divided by two:

>>> math.sqrt(2) / 2.0
0.707106781187

3.5 Composition

So far, we have looked at the elements of a program—variablgwessions, and
statements—in isolation, without talking about how to comelthem.

One of the most useful features of programming languagéeisability to take small
building blocks andcomposethem. For example, the argument of a function can be
any kind of expression, including arithmetic operators:

X = math.sin(degrees / 360.0 * 2 * math.pi)
And even function calls:
X = math.exp(math.log(x+1))

Almost anywhere you can put a value, you can put an arbitrgpyession, with one
exception: the left side of an assignment statement has & \@iable name. An
expression on the left side is a syntax error.

3.6. Debugging 27

>>> minutes = hours * 60 # right
>>> hours * 60 = minutes # wrong!
SyntaxError: can 't assign to operator

3.6 Debugging

If you are using a text editor to write your scripts, you migim into problems with
spaces and tabs. The best way to avoid these problems is spases exclusively (no
tabs). Most text editors that know about Python do this bydéfbut some don't.

Tabs and spaces are usually invisible, which makes themtbatelbug, so try to find
an editor that manages indentation for you.

Also, don'’t forget to save your program before you run it. ®atevelopment environ-
ments do this automatically, but some don't. In that caseptbgram you are looking
at in the text editor is not the same as the program you arergifthe one on disk).

Debugging can take a long time if you keep running the saneeyiact, program over
and over! And that brings me to the Third Theorem of Debugging

Make sure that the code you are looking at is the code you arerrg.

If you're not sure, put something lik@int('hello!") at the beginning of the pro-
gram and runitagain. If you don't séello!" , you're not running the right program!
3.7 Glossary

function: A named sequence of statements that performs some useftdtiope
Functions may or may not take arguments and may or may notpeod re-
sult.

module: A file that contains a collection of related functions andeottiefinitions.
import statement: A statement that reads a module file and creates a moduletobjec

module object: A value created by aimport statement that provides access to the
values defined in a module.

dot notation: The syntax for calling a function in another module by spgod the
module name followed by a dot (period) and the function name.

composition: Using an expression as part of a larger expression, or arstateas part
of a larger statement.

3.8 Exercises

28

Chapter 3. Using Functions

Chapter 4

Strings

4.1 Characters

A character is a string one unit in length. Characters anedtmternally in the com-
puter as a number, with one unique number for each char&gecan find this number
with theord conversion function, and conversely convert numbers ihtoacters with
thechr function.

>>> ord(' A')
65

>>> chr(66)
B

4.2 A string is a sequence

A string is asequenceof characters. You can access the characters one at a titme wit
the bracket operator:

>>> fruit = ' banana'
>>> |etter = fruit[1]

The second statement selects character number Iffuém and assigns it tetter

The expression in brackets is callediadex. The indexindicateswhich character in
the sequence you want (hence the name).

But you might not get what you expect:

>>> print(letter)
a

30 Chapter 4. Strings

For most people, the first letter dfanana’ is b, nota. But for computer scientists,
the index is an offset from the beginning of the string, araldffset of the first letter
is zero.

>>> letter = fruit[0]
>>> print(letter)
b

Sob is the Oth letter (“zero-eth”) dbanana’ , a is the 1th letter (“one-eth”), andis
the 2th (“two-eth”) letter.

You can use any expression, including variables and opsraas an index, but the
value of the index has to be an integer. Otherwise you get:

>>> |etter = fruit[1.0]
TypeError: string indices must be integers

4.3 len

len is a built-in function that returns the number of charactes string:
>>> fruit = ' banana'

>>> |en(fruit)

6

To get the last letter of a string, you might be tempted to tnpething like this:

>>> length = len(fruit)
>>> last = fruit[length]
IndexError; string index out of range

The reason for thindexError s that there is no letter ithanana’ with the index 6.
Since we started counting at zero, the six letters are nusdb@to 5. To get the last
character, you have to subtract 1 fréength

>>> last = fruit[length-1]
>>> print(last)
a

Alternatively, you can use negative indices, which coumidard from the end of the
string. The expressiofnuit[-1] yields the last letteffuit[-2] yields the second
to last, and so on.

4.4 String operations

In general, you cannot perform mathematical operationgrangs, even if the strings
look like numbers, so the following are illegal:

4.5. String slices 31

201 ' eggs' /' easy' " third ' *"a charm'’

The+ operator does work with strings, but it might not do exactlyatvyou expect: it
performsconcatenation which means joining the strings by linking them end-to-end
For example:

first = ' throat
second = ' warbler
print(first + second)

The output of this program throatwarbler

The* operator also works on strings; it performs repetition. &@ample,Spam™3 is
'SpamSpamSpam’. If one of the operands is a string, the other has to be anenteg

On one hand, this use ef and* makes sense by analogy with addition and multi-
plication. Just ag*3 is equivalent to}+4+4, we expectSpam*3 to be the same as
'Spam’+'Spam'+'Spam’ , and it is. On the other hand, there is a significant way in
which string concatenation and repetition are differemtrfinteger addition and multi-
plication. Can you think of a property that addition and nplitation have that string
concatenation and repetition do not?

4.5 String slices

A segment of a string is calledslice Selecting a slice is similar to selecting a charac-
ter:

>>> s = ' Monty Python '
>>> print(s[0:5])

Monty

>>> print(s[6:13])

Python

The operatofn:m] returns the part of the string from the “n-eth” characterte t
“m-eth” character, including the first but excluding thetlaghis behavior is counter-
intuitive, but might help to imagine the indices pointihgtweerthe characters, as in
the following diagram:

fruuté’banana’

index0123456

If you omit the first index (before the colon), the slice staat the beginning of the
string. If you omit the second index, the slice goes to theadrte string. Thus:

32 Chapter 4. Strings

>>> fruit = ' banana'
>>> fruit[:3]

' ban
>>> fruit[3]
"ana’

If the first index is greater than or equal to the second theltresanempty string,
represented by two quotation marks:

>>> fruit = ' banana'
>>> fruit[3:3]

An empty string contains no characters and has length 0,thaet than that, it is the
same as any other string.
Exercise 4.1.Given thatfruit is a string, what doesuit[;] mean?

4.6 Strings are immutable

Itis tempting to use thg operator on the left side of an assignment, with the intentio
of changing a character in a string. For example:

>>> greeting = ' Hello, world!
>>> greeting[0] = "J
TypeError: object does not support item assignment

The “object” in this case is the string and the “item” is thadcter you tried to assign.
For now, armobject is the same thing as a value, but we will refine that definitadarl
An item is one of the values in a sequence.

The reason for the error is that strings arenutable, which means you can’t change
an existing string. The best you can do is create a new stngg a variation on the
original:

>>> greeting = ' Hello, world! '

>>> new_greeting = 'J' + greeting[1]
>>> print(new_greeting)

Jello, world!

This example concatenates a new first letter onto a sligesefing . It has no effect
on the original string.

4.7 string methods

A method is similar to a function—it takes arguments and returns aerathut the
syntax is different. Methods are attached to classes. Fonpbe, the methodpper is
a part of the string class and returns a new string with albuggose letters:

4.7. string methods 33

Instead of the function syntasper(word) , it uses the method syntaord.upper()

>>> word = ' banana’

>>> new_word = word.upper()
>>> print(new_word)

BANANA

This form of dot notation specifies the name of the methupgder , and the name of
the string to apply the method teprd . The parentheses indicate that this method has
no parameters.

A method call is called amvocation; in this case, we would say that we are invoking
upper on theword .

The string method namefthd is the opposite of thfl operator. Instead of taking
an index and extracting the corresponding character, @stakcharacter and finds the
index where that character appears. If the character isonoidf, the function returns
-1.

>>> word = ' banana'
>>> index = word.find(
>>> print(index)

1

a')

In this example, we invokénd onword and pass the letter we are looking for as a
parameter.

Thefind method can find substrings, not just characters:

>>> word.find(' na')
2

It can take as a second argument the index where it shoutd star

>>> word.find(' na', 3)
4

And as a third argument where it should stop:

>>> pname = ' hob'
>>> name.find('b', 1, 2)
-1

This search fails becaubaloes not appear in the index range frbmo 2 (not including
2).

Exercise 4.2. Another useful string method is calleeunt Read the documentation of
this method and write an invocation that counts the numbeisoh 'banana’ . Hint:
there are three.

34 Chapter 4. Strings

4.8 Glossary

object: Something a variable can refer to. For now, you can use “thjed “value”
interchangeably.

sequence:An ordered set; that is, a set of values where each valuerigifiee by an
integer index.

item: One of the values in a sequence.

index: An integer value used to select an item in a sequence, suchlemacter in a
string.

slice: A part of a string specified by a range of indices.

empty string: A string with no characters and length 0, represented by tatagion
marks.

concatenate: To join two operands end-to-end.
immutable: The property of a sequence whose items cannot be assigned.

traverse: To iterate through the items in a sequence, performing dasiraperation
on each.

search: A pattern of traversal that stops when it finds what it is |ogkior.

counter: A variable used to count something, usually initialized ¢oazand then in-
cremented.

method: A function that is associated with an object and called udioignotation.

invocation: A statement that calls a method.

4.9 Exercises

Part Il

Decisions, Detours and Data
Structures

Chapter 5

Conditionals

5.1 Boolean expressions

A boolean expressioris an expression that is either true or false. The followirg e
amples use the operater, which compares two operands and produlres if they
are equal anéfalse otherwise:

>>> 5 ==
True
>>> 5 ==
False

True andFalse are special values that belong to the cleed ; they are not strings:

>>> type(True)
<class ' bool ' >
>>> type(False)
<class ' bool ' >

The== operator is one of theomparison operators the others are:

Xl=y # x is not equal to y

X >y # x is greater than y

X<y # x is less than y

X >=y # X is greater than or equal to y
X <=y # x is less than or equal to y

Although these operations are probably familiar to you,Riithon symbols are differ-
ent from the mathematical symbols. A common error is to usaglesequal sign=)
instead of a double equal sigr=). Remember that is an assignment operator arel
is a comparison operator. There is no such thing<agr =>.

38 Chapter 5. Conditionals

5.2 Logical operators

There are threkogical operators and, or , andnot . The semantics (meaning) of these
operators is similar to their meaning in English. For exampl> 0 and x < 10 is
true only ifx is greater than @ndless than 10.

n%2 == 0 or n%3 == 0 is true ifeitherof the conditions is true, that is, if the number
is divisible by 2or 3.

Finally, thenot operator negates a boolean expressiomosdx > y) s true ifx >
y is false, that is, ik is less than or equal to

Strictly speaking, the operands of the logical operatoosikhbe boolean expressions,
but Python is not very strict. Any nonzero number is intetgaeas “True.”

>>> 17 and True
True

This flexibility can be useful, but there are some subtldbésthat might be confusing.
You might want to avoid it (unless you know what you are doing)

5.3 Conditional execution

In order to write useful programs, we almost always needliigyato check conditions
and change the behavior of the program accordingbnditional statementsgive us
this ability. The simplest form is thé statement:

if x > 0:
print((' x is positve ")

The boolean expression after thestatement is called theondition. If it is true, then
the indented statement gets executed. If not, nothing mesppe

if statements have a header followed by an indented blockerS¢suts like this are
calledcompound statements

There is no limit on the number of statements that can appeheibody, but there has
to be at least one. Occasionally, it is useful to have a body mo statements (usually
as a place keeper for code you haven't written yet). In theg¢ cgou can use thess
statement, which does nothing.

if x <0:
pass # need to handle negative values!

5.4. Alternative execution 39

5.4 Alternative execution

A second form of thef statement is alternative execution, in which there are two
possibilities and the condition determines which one gets@ted. The syntax looks
like this:

if x%2 == 0:

print(' x is even ')
else:

print((" x is odd ')

If the remainder whemn is divided by 2 is 0, then we know thatis even, and the

program displays a message to that effect. If the condisdalse, the second set of
statements is executed. Since the condition must be trualse, fexactly one of the
alternatives will be executed. The alternatives are cdlleahches because they are
branches in the flow of execution.

5.5 Chained conditionals

Sometimes there are more than two possibilities and we neee tinan two branches.
One way to express a computation like that chained conditional

if x <y

printf(' x is less thany ')
elif x > y:

print(' x is greater than y ")
else:

printi ' x and y are equal ')

elif is an abbreviation of “else if.” Again, exactly one branchl e executed. There
is no limit on the number oflif statements. If there is afse clause, it has to be at
the end, but there doesn’t have to be one.

if choice ==
function1()

elif choice ==
function2()

elif choice ==
function3()

Each condition is checked in order. If the first is false, taetis checked, and so on. If
one of them is true, the corresponding branch executes hanstatement ends. Even
if more than one condition is true, only the first true brancbogites.

40 Chapter 5. Conditionals

5.6 Nested conditionals

One conditional can also be nested within another. We coala hwritten the tri-
chotomy example like this:

if x ==y:
prinf(('x and y are equal ')
else:
if x <y
printf(' x is less thany ')
else:
print(' x is greater than y ")

The outer conditional contains two branches. The first bramontains a simple state-
ment. The second branch contains anothestatement, which has two branches of its
own. Those two branches are both simple statements, alihtey could have been
conditional statements as well.

Although the indentation of the statements makes the streieipparent, nested condi-
tionals become difficult to read very quickly. In generalsia good idea to avoid them
when you can.

Logical operators often provide a way to simplify nestedditional statements. For
example, we can rewrite the following code using a singledd@anal:

if 0 <x
if x < 10:
print(' x is a positive single digit. ")

Theprint statement is executed only if we make it past both condit&®rsm we can
get the same effect with thead operator:

if 0 <xandx < 10
print(' x is a positive single digit. ")

5.7 String comparison

The comparison operators work on strings. To see if twogsrare equal:

if word == ' banana':
print(' Yes, we have no bananas! ')

Other comparison operations are useful for putting worddphabetical order:

if word < ' banana':
print(' Your word, ' + word + ', comes before banana. ')
elif word > ' banana':

5.8. Random numbers 41

print(' Your word, + word + ', comes after banana. ')
else:

print(' Yes, we have no bananas! ')

Python does not handle uppercase and lowercase letterartieevgay that people do.
All the uppercase letters come before all the lowercaseretso:

Your word, Zebra, comes before banana.

A common way to address this problem is to convert stringsstaadard format, such
as all lowercase, before performing the comparison. Theerddficult problem is
making the program realize that zebras are not fruit.

5.8 Random numbers

Most computer programs do the same thing every time theyusegiven the same
inputs, so they are said to deterministic. Determinism is usually a good thing, since
we expect the same calculation to yield the same result.dfoespplications, though,
we want the computer to be unpredictable. Games are an abegkample, but there
are more.

Making a program truly nondeterministic turns out to be ro¢asy, but there are ways
to make it at least seem nondeterministic. One of them isd¢@lgorithms that generate
pseudorandomnumbers. Pseudorandom numbers are not truly random bettaayse
are generated by a deterministic computation, but just biitm at the numbers it is
all but impossible to distinguish them from random.

Therandom module provides functions that generate pseudorandom exsn(hich |
will simply call “random” from here on).

The functionrandom returns a random float between 0.0 and 1.0 (including 0.0dsut n
1.0). Each time you cathndom, you get the next number in a long series. We can use
this to simulate flipping a coin with a 50% probability of Heaghd a 50% probability

of Tails:

import random

X = random.random()
if x > 0.5:

print((' Heads')
else:

print(' Tails ')

The functionrandint takes parameteftsw andhigh and returns an integer between
low andhigh (including both).

42 Chapter 5. Conditionals

>>> random.randint(5, 10)
5
>>> random.randint(5, 10)
9

Therandom module also provides functions to generate random valwes éontinu-
ous distributions including Gaussian, exponential, gayrand a few more.

5.9 Debugging

The traceback Python displays when an error occurs corddirtsof information, but
it can be overwhelming, especially when there are many fsamnghe stack. The most
useful pieces are usually:

» what kind of error it was, and

» where it occurred.

Syntax errors are usually easy to find, but there are a fewhgstcWhitespace errors
can be tricky because spaces and tabs are invisible and weseatdo ignoring them.

>>> x = §

>> y=6
File "<stdin>", line 1

y =6

SyntaxError: invalid syntax

In this example, the problem is that the second line is inetkby one space. But the er-
ror message points tg which is misleading. In general, error messages indichgrev
the error was discovered, but the actual error might beegdrlithe code, sometimes
on a previous line.

And that brings me to the Fourth Theorem of Debugging:

Error messages tell you where the problem was discoverddthhtiis
often not where it was caused.

5.10 Glossary
boolean expression:An expression whose value is eitfigne or False .

comparison operator: One of the operators that compares its operandst=, >, <,
>=, and<=.

5.11. Exercises 43

logical operator: One of the operators that combines boolean expressamads:or ,
andnot .

conditional statement: A statement that controls the flow of execution depending on
some condition.

condition: The boolean expression in a conditional statement thatrdetes which
branch is executed.

compound statement: A statement that consists of a header and a body. The header
ends with a colon (). The body is indented relative to thelkea

body: The sequence of statements within a compound statement.
branch: One of the alternative sequences of statements in a conditstatement.

chained conditional: A conditional statement with a series of alternative brasch

5.11 Exercises

44

Chapter 5. Conditionals

Chapter 6

Writing functions

6.1 Adding new functions

So far, we have only been using the functions that come withd?y but it is also
possible to add new functions. fnction definition specifies the name of a new
function and the sequence of statements that execute waduartttion is called.

Here is an example:

def print_lyrics():
print"l ' m a lumberjack, and I ' m okay.")
print("l sleep all night and | work all day.")

def is a keyword that indicates that this is a function definitiohhe name of the
function isprint _lyrics . The rules for function names are the same as for variable
names: letters, numbers and some punctuation marks atebegthe first character
can’t be a number. You can't use a keyword as the name of aifumeind you should
avoid having a variable and a function with the same name.

The empty parentheses after the name indicate that thiiéaraoesn’t take any argu-
ments.

The first line of the function definition is called theader, the rest is called thbody.
The header has to end with a colon and the body has to be imleRyeconvention,
the indentation is always four spaces. The body can contgimamber of statements.

The strings in the print functions are enclosed in doubletegio Single quotes and
double quotes do the same thing. Most people use single gjeatept in cases like
this where a single quote (which is also an apostrophe) apethe string.

If you type a function definition in interactive mode, thedrgreter prints ellipses.()
to let you know that the definition isn’t complete:

46 Chapter 6. Writing functions

>>> def print_lyrics():
print("l "m a lumberjack, and | ' m okay.")
print("l sleep all night and | work all day.")

To end the function, you have to enter an empty line (this tsecessary in a script).
Defining a function creates a variable with the same name.

>>> print(print_lyrics)

<function print_lyrics at Oxb7e99e9c>
>>> print(type(print_lyrics))

<class ' function ' >

The value ofrint _lyrics is afunction object, which has clas&inction
The syntax for calling the new function is the same as forthnifunctions:

>>> print_lyrics()
"' m a lumberjack, and I ' m okay.
| sleep all night and | work all day.

Once you have defined a function, you can use it inside anfithetion. For example,
to repeat the previous refrain, we could write a functiometkiepeat _lyrics

def repeat_lyrics():
print_lyrics()
print_lyrics()

And then callrepeat _lyrics

>>> repeat_lyrics()

' m a lumberjack, and I ' m okay.
| sleep all night and | work all day.
' m a lumberjack, and | ' m okay.

| sleep all night and | work all day.

But that’s not really how the song goes.

6.2 Definitions and uses

Pulling together the code fragments from the previoussegcthe whole program looks
like this:

def print_lyrics():
print("l ' m a lumberjack, and I ' m okay.")
print("l sleep all night and | work all day.")

6.3. Flow of execution 47

def repeat_lyrics():
print_lyrics()
print_lyrics()

repeat_lyrics()

This program contains two function definition@int _lyrics andrepeat _lyrics
Function definitions get executed just like other statesydmit the effect is to create
the new function. The statements inside the function do ettegecuted until the
function is called, and the function definition generatesutput.

As you might expect, you have to create a function before ywuexecute it. In other
words, the function definition has to be executed before thetime it is called.
Exercise 6.1.Move the last line of this program to the top, so the functialhappears
before the definitions. Run the program and see what errosagesyou get.

Exercise 6.2. Move the function call back to the bottom and move the definibif
print _lyrics after the definition ofepeat _lyrics . What happens when you run
this program?

6.3 Flow of execution

In order to ensure that a function is defined before its first yeu have to know the
order in which statements are executed, which is calleddlaeof execution

Execution always begins at the first statement of the prog&taiements are executed
one at a time, in order from top to bottom.

Function definitions do not alter the flow of execution of thegram, but remember
that statements inside the function are not executed tetiltinction is called.

A function call is like a detour in the flow of execution. Inateof going to the next
statement, the flow jumps to the body of the function, execalithe statements there,
and then comes back to pick up where it left off.

That sounds simple enough, until you remember that one itamcgn call another.

While in the middle of one function, the program might havexeaaite the statements
in another function. But while executing that new functitire program might have to
execute yet another function!

Fortunately, Python is adept at keeping track of where isiseach time a function
completes, the program picks up where it left off in the fimtthat called it. When it
gets to the end of the program, it terminates.

What's the moral of this sordid tale? When you read a program dgm’t always want
to read from top to bottom. Sometimes it makes more sensaulifgltow the flow of
execution.

48 Chapter 6. Writing functions

6.4 Why functions?

It may not be clear why it is worth the trouble to divide a pramgrinto functions. There
are a lot of reasons; here are a few:

» Creating a new function gives you an opportunity to nameoagiof statements,
which makes your program easier to read and debug.

» Functions can make a program smaller by eliminating répettode. Later, if
you make a change, you only have to make it in one place.

« Dividing a long program into functions allows you to debing tparts one at a
time and then assemble them into a working whole.

* Well-designed functions are often useful for many proggar®nce you write
and debug one, you can reuse it.

6.5 Parameters and arguments

Some of the built-in functions you have used require argumelRor example, when
you callmath.sin you pass a number (in radians) as an argument. Some functions
take more than one argumentath.pow takes two, the base and the exponent.

Inside the function, the arguments are assigned to vasatakbedparameters Here
is an example of a user-defined function that takes an argtimen

def print_twice(bruce):
print(bruce)
print(bruce)

This function assigns the argument to a parameter ndmaeel . When the function is
called, it prints the value of the parameter, whatever tce.

This function works with any value that can be printed.

>>> print_twice(' Spam)
Spam

Spam

>>> print_twice(17)

17

17

>>> print_twice(math.pi)
3.14159265359
3.14159265359

The same rules of composition that apply to built-in functi@lso apply to user-defined
functions, so we can use any kind of expression as an argudorgmint _twice :

6.6. Variables and parameters are local 49

>>> print_twice(' Spam ' *4)
Spam Spam Spam Spam

Spam Spam Spam Spam

>>> print_twice(math.cos(math.pi))
-1.0

-1.0

The argument is evaluated before the function is calledy soa examples the expres-
sions'Spam *4 andmath.cos(math.pi) are only evaluated once.

You can also use a variable as an argument:

>>> michael = ' Eric, the half a bee.
>>> print_twice(michael)

Eric, the half a bee.

Eric, the half a bee.

The name of the variable we pass as an argunmgoitdel) has nothing to do with the
name of the parameterr(ice). It doesn’t matter what the value was called back home
(in the caller); here iprint _twice , we call everybodyruce .

6.6 Variables and parameters are local

When you create a variable inside a function, lbisal, which means that it only exists
inside the function. For example:

def cat_twice(partl, part2):
cat = partl + part2
print_twice(cat)

This function takes two arguments, concatenates them,ramd the result twice. Here
is an example that uses it:

>>> linel = ' Bing tiddle '
>>> line2 = ' tiddle bang. '
>>> cat_twice(linel, line2)

Bing tiddle tiddle bang.

Bing tiddle tiddle bang.

Whencat _twice terminates, the variablat is destroyed. If we try to print it, we get
an exception:

>>> print(cat)
NameError: hame

cat ' is not defined

Parameters are also local. For example, outgide _twice , there is no such thing as
bruce .

50 Chapter 6. Writing functions

6.7 Stack diagrams

To keep track of which variables can be used where, it is Somstuseful to draw a
stack diagram. Like state diagrams, stack diagrams show the value of eatable,
but they also show the function each variable belongs to.

Each function is represented byrame. A frame is a box with the name of a function
beside it and the parameters and variables of the functmdant. The stack diagram
for the previous example looks like this:

linel —= ’'Bing tiddle’

__main__
line2 —= ‘tiddle bang.’
partl —= ’'Bing tiddle’
cat_twice part2 —= ’tiddle bang.’

cat —= ’'Bing tiddle tiddle bang.’

print_twice bruce —= ’'Bing tiddle tiddle bang.’

The frames are arranged in a stack that indicates whichiimcglled which, and
so on. In this exampleyrint _twice was called bycat _twice , andcat _twice was
called by__main __, which is a special name for the topmost frame. When you ceeate
variable outside of any function, it belongs_tmain __.

Each parameter refers to the same value as its correspaadjagent. Sopartl has
the same value disel ,part2 has the same value lige2 , andbruce has the same
value agat .

If an error occurs during a function call, Python prints ttare of the function, and
the name of the function that called it, and the name of thetfan that calledhat, all
the way back ta_main __.

For example, if you try to accesat from within print _twice , you get @NameError :

Traceback (innermost last):
File "test.py", line 13, in __main__
cat_and_print_twice(linel, line2)
File "test.py", line 5, in cat_and_print_twice
print_twice(cat)
File "test.py", line 9, in print_twice
print(cat)
NameError: name ' cat' is not defined

This list of functions is called &aceback. It tells you what program file the error

6.8. Fruitful functions and void functions 51

occurred in, and what line, and what functions were exegudinthe time. It also
shows the line of code that caused the error.

The order of the functions in the traceback is the same asrtteg of the frames in the
stack diagram. The function that is currently running ishatibottom.

6.8 Fruitful functions and void functions

Some of the functions we are using, such as the math functy@eld results; for want
of a better name, | call thernuitful functions . Other functions, likeprint _twice ,
perform an action but don’t return a value. They are calieid functions.

When you call a fruitful function, you almost always want to stamething with the
result; for example, you might assign it to a variable or tse ipart of an expression:

X = math.cos(radians)
golden = (math.sgrt(5) + 1) / 2

When you call a function in interactive mode, Python displdagsresult:

>>> math.sqrt(5)
2.2360679774997898

But in a script, if you call a fruitful function all by itselthe return value is lost forever!
math.sqrt(5)

This script computes the square root of 5, but since it dossore or display the result,
it is not very useful.

Void functions might display something on the screen or hsme other effect, but
they don’t have a return value. If you try to assign the regul variable, you get a
special value calletone.

>>> result = print_twice(' Bing ')
Bing

Bing

>>> print(result)

None

The valueNone is not the same as the strifigpne’ . It is a special value that has its
own class:

>>> print(type(None))
<class ' NoneType' >

The functions we have written so far are all void. We will staiting fruitful functions
in the next section.

52 Chapter 6. Writing functions

6.9 Return values

Our first example of a fruitful function isrea , which returns the area of a circle with
the given radius:

def area(radius):
temp = math.pi * radius**2
return temp

In a fruitful function thereturn statement includes a return value. This statement
means: “Return immediately from this function and use tHefdng expression as

a return value.” The expression provided can be arbitradiyplicated, so we could
have written this function more concisely:

def area(radius):
return math.pi * radius**2

On the other handemporary variables like temp often make debugging easier.

Sometimes it is useful to have multiple return statements, io each branch of a
conditional:

def absolute_value(x):
if x < 0:
return -x
else:
return x

Since theseeturn statements are in an alternative conditional, only one lvélexe-
cuted.

As soon as a return statement executes, the function telesimathout executing any
subsequent statements. Code that appears afieira statement, or any other place
the flow of execution can never reach, is caltlethd code

In a fruitful function, it is a good idea to ensure that evepsgible path through the
program hits aeturn statement. For example:

def absolute_value(x):
if x <O0:
return -x
elif x > 0:
return X

This program is not correct because ifiappens to be 0, neither condition is true, and
the function ends without hitting @turn statement. If the flow of execution gets to
the end of a function, the return valueNsne, which is not the absolute value of 0.

>>> print(absolute_value(0))
None

6.10. Boolean functions 53

Exercise 6.3. Write acompare function that returnd if x > y,0ifx == y, and-1 if
X <y.

6.10 Boolean functions

Functions can return booleans, which is often conveniantifting complicated tests
inside functions. For example:

def is_divisible(x, y):
if x %y ==0:
return True
else:
return False

It is common to give boolean functions names that sound ligs/no questions;
is _divisible returns eitheifrue or False to indicate whethex is divisible byy.

Here is an example:

>>> is_divisible(6, 4)
False
>>> is_divisible(6, 3)
True

The result of the== operator is a boolean, so we can write the function more sehgci
by returning it directly:

def is_divisible(x, y):
return x % y == 0

Boolean functions are often used in conditional statements

if is_divisible(x, v):
print(' x is divisible by y ")

It might be tempting to write something like:

if is_divisible(x, y) == True:
print(' x is divisible by y ")

But the extra comparison is unnecessary.
Exercise 6.4. Write a functionis _between(x, y, 2) that returnsTrue ifx <y <z
or False otherwise.

6.11 Incremental development

As you write larger functions, you might start find yoursgléading more time debug-
ging.

54 Chapter 6. Writing functions

To deal with increasingly complex programs, you might wantry a process called
incremental development The goal of incremental development is to avoid long de-
bugging sessions by adding and testing only a small amowtad# at a time.

As an example, suppose you want to find the distance betweepdints, given by the
coordinategxs,y1) and(xz,y2). By the Pythagorean theorem, the distance is:

distance= \/(Xz —x1)2+ (Y2 —Y1)?

The first step is to consider whatlstance function should look like in Python. In
other words, what are the inputs (parameters) and what isutpait (return value)?

In this case, the two points are the inputs, which you caresgt using four parame-
ters. The return value is the distance, which is a floatingtp@lue.

Already you can write an outline of the function:

def distance(x1, y1, x2, y2)
return 0.0

Obviously, this version doesn’'t compute distances; it gbveeturns zero. But it is
syntactically correct, and it runs, which means that youteahit before you make it
more complicated.

To test the new function, call it with sample arguments:

>>> distance(l, 2, 4, 6)
0.0

| chose these values so that the horizontal distance is 3hendettical distance is 4;
that way, the result is 5 (the hypotenuse of a 3-4-5 triandgi)en testing a function,
it is useful to know the right answer.

At this point we have confirmed that the function is syntadtccorrect, and we can
start adding code to the body. A reasonable next step is taHandifferences; — x3
andy, —y;. The next version stores those values in temporary vasadhel prints
them.

def distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 -yl
print(" dx is ', dx)
print(' dy is ', dy)
return 0.0

If the function is working, it should displagix is 3 and'dy is 4' . If so, we know
that the function is getting the right arguments and perfognthe first computation
correctly. If not, there are only a few lines to check.

Next we compute the sum of squaresipfanddy:

6.11. Incremental development 55

def distance(x1, y1, x2, y2):
dx = x2 - x1
dy =y2 -yl
dsquared = dx**2 + dy**2
print(' dsquared is: ', dsquared)
return 0.0

Again, you would run the program at this stage and check thygubwhich should be
25).

Finally, you can usenath.sqrt to compute and return the result:

def distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 -yl
dsquared = dx**2 + dy**2
result = math.sqrt(dsquared)
return result

If that works correctly, you are done. Otherwise, you migan®to print the value of
result before the return statement.

The final version of the function doesn't display anythingentit runs; it only returns

a value. Therrint statements we wrote are useful for debugging, but once ybu ge
the function working, you should remove them. Code like ihatalledscaffolding
because it is helpful for building the program but is not mdithe final product.

When you start out, you should add only a line or two of code aha.tAs you gain
more experience, you might find yourself writing and debngdiigger chunks. Either
way, incremental development can save you a lot of debuggimsg

The key aspects of the process are:

1. Startwith a working program and make small incrementahges. At any point,
if there is an error, you should have a good idea where it is.

2. Use temporary variables to hold intermediate values socan display and
check them.

3. Once the program is working, you might want to remove softieeoscaffolding
or consolidate multiple statements into compound expoassbut only if it does
not make the program difficult to read.

Exercise 6.5. Use incremental development to write a function calgpotenuse
that returns the length of the hypotenuse of a right triargjlen the lengths of the two
legs as arguments. Record each stage of the developmesessgras you go.

56 Chapter 6. Writing functions

6.12 docstring

A docstring is a string at the beginning of a function that explains therface (“doc
is short for “documentation”). Here is an example for ounabdistance function:

def distance(x1, y1, x2, y2)
""Calculates the distance between two points
when given their x and y numeric values.

dx = x2 - x1

dy = y2 -yl

dsquared = dx**2 + dy**2
result = math.sgrt(dsquared)
return result

This docstring is a triple-quoted string, also known as atitine string because the
triple quotes allow the string to span more than one line.

It is terse, but it contains the essential information someewould need to use this
function. It explains concisely what the function does fwiit getting into the details
of how it does it). It explains what effect each parameterdrashe behavior of the
function and what type each parameter should be (if it is betaus).

Writing this kind of documentation is an important part ofeirface design. A well-
designed interface should be simple to explain; if you awérgea hard time explaining
one of your functions, that might mean that the interfacdd:be improved.

6.13 Composition

As you should expect by now, you can call one function fromhimitanother. This
ability is calledcomposition

As an example, we'll write a function that takes two poinit® tenter of the circle and
a point on the perimeter, and computes the area of the circle.

Assume that the center point is stored in the variaktesndyc, and the perimeter
point is inxp andyp. The first step is to find the radius of the circle, which is the
distance between the two points. Fortunately, there is etiferm distance |, that does
that:

radius = distance(xc, yc, Xp, yp)
The next step is to find the area of a circle with that radius:
result = area(radius)

Wrapping that up in a function, we get:

6.14. Debugging 57

def circle_area(xc, yc, xp, yp):
radius = distance(xc, yc, Xp, yp)
result = area(radius)
return result

The temporary variablesdius andresult are useful for development and debug-
ging, but once the program is working, we can make it moreisertty composing the
function calls:

def circle_area(xc, yc, xp, yp):
return area(distance(xc, yc, xp, yp))

6.14 Debugging

As you start writing bigger programs, you might find yoursghiending more time
debugging. More code means more chances to make an error@acptace for bugs
to hide.

One way to cut your debugging time is “debugging by bisectibor example, if there
are 100 lines in your program and you check them one at a tinvepuld take 100
steps.

Instead, try to break the problem in half. Look at the middi¢he program, or near
it, for an intermediate value you can check. Adphiat statement (or something else
that has a verifiable effect) and run the program.

If the mid-point check is incorrect, the problem must be ifinst half of the program.
If it is correct, the problem is in the second half.

Every time you perform a check like this, you halve the numifdines you have to
search. After six steps (which is much less than 100), youldvba down to one or
two lines of code.

At least in theory. In practice it is not always clear what tiréddle of the program”
is and not always possible to check it. It doesn’t make semseunt lines and find the
exact midpoint. Instead, think about places in the progrdrare/there might be errors
and places where it is easy to put a check. Then choose a spo¢ wbu think the
chances are about the same that the bug is before or aftdnebk.c

6.15 Glossary
fruitful function: A function that returns a value.
void function: A function that doesn'’t return a value.

function definition: A statement that creates a new function, specifying its ngae
rameters, and the statements it executes.

58 Chapter 6. Writing functions

function object: A value created by a function definition. The name of the figmcis
a variable that refers to a function object.

header: The first line of a function definition.
body: The sequence of statements inside a function definition.

parameter: A name used inside a function to refer to the value passed agament.

function call: A statement that executes a function. It consists of thetfomcmame
followed by an argument list.

argument: A value provided to a function when the function is called.isTValue is
assigned to the corresponding parameter in the function.

local variable: A variable defined inside a function. A local variable canydré used
inside its function.

return value: The result of a function. If a function call is used as an eggian, the
return value is the value of the expression.

flow of execution: The order in which statements are executed during a program r

stack diagram: A graphical representation of a stack of functions, theiialdes, and
the values they refer to.

frame: A box in a stack diagram that represents a function call. hta@ios the local
variables and parameters of the function.

traceback: A list of the functions that are executing, printed when aoegtion oc-
curs.

temporary variable: A variable used to store an intermediate value in a complex ca
culation.

dead code: Part of a program that can never be executed, often becaygaaars after
areturn statement.

None: A special value returned by functions that have no returtestant or a return
statement without an argument.

incremental development: A program development plan intended to avoid debugging
by adding and testing only a small amount of code at a time.

scaffolding: Code that is used during program development but is not pénedinal
version.

guardian: A programming pattern that uses a conditional statemertié¢cicfor and
handle circumstances that might cause an error.

6.16. Exercises 59

6.16 Exercises

Exercise 6.6. Fermat’s Last Theorem says that there are no integers a, th,casuch
that

a'+b"=¢"
for any values of n greater than 2.

Write a function namecheck _fermat that takes four parametersa-h, c andn—and
that checks to see if Fermat’s theorem holds. If n is gredtant2 and it turns out to
be true that

a'+b"=c"

the program should print “Holy smokes, Fermat was wrong!"h@twise the program
should print “No, that doesn’t work”

Exercise 6.7.Python provides a built-in function calldeh that returns the length of
a string, so the value dén(allen’) is 5.

Write a function namedght _justify that takes a string namesl as a parameter
and that prints the string with enough leading spaces sotti@tast letter of the string
is in column 70 of the display.

>>> right_justify(“allen ')
allen
Exercise 6.8.

Write a function that draws grids like this in any size

oo oo +
+oo- - oo +

+oo- - oo +

Hint: to print more than one value on a line, you can print a comseparated se-
guence:

print("+, "-")

1Based on an exercise in OualliRractical C Programming, Third EditiorO’Reilly (1997)

60 Chapter 6. Writing functions

If we add the argumergnd=" , Python leaves the line unfinished, so the value printed
next appears on the same line.

prinf(('+, end=")
print(' -")

The output of these statementstis’

Chapter 7

Iteration

7.1 Multiple assignment

As you may have discovered, it is legal to make more than osigmsent to the same
variable. A new assignment makes an existing variable tefarnew value (and stop
referring to the old value).

bruce = 5
print(bruce)
bruce = 7
print(bruce)

The output of this program i§, then7, because the first timlruce is printed, its
value is 5, and the second time, its value is 7. The comma a&rittief the firsprint
statement suppresses the newline, which is why both ousypytsar on the same line.

Here is whaimultiple assignmentlooks like in a state diagram:

bruce =
\7

With multiple assignment it is especially important to giguish between an assign-
ment operation and a statement of equality. Because Pygemthe equal sigr) for
assignment, it is tempting to interpret a statementdike b as a statement of equality.
Itis not!

First, equality is a symmetric relation and assignment is Ror example, in mathe-
matics, ifa= 7 then 7= a. But in Python, the statemeat= 7 is legal and7 = a is
not.

62 Chapter 7. Iteration

Furthermore, in mathematics, a statement of equalitylieettue or false, for all time.
If a= b now, thena will always equab. In Python, an assignment statement can make
two variables equal, but they don’t have to stay that way:

a=>5
b=a # a and b are now equal
a=3 # a and b are no longer equal

The third line changes the value @but does not change the valuebgfso they are no
longer equal.

Although multiple assignment is frequently helpful, yowshl use it with caution. If
the values of variables change frequently, it can make tle clifficult to read and
debug.

7.2 Updating variables

One of the most common forms of multiple assignment isipgdate, where the new
value of the variable depends on the old.

X = x+1
This means “get the current valuexgfadd one, and then updatevith the new value.”

If you try to update a variable that doesn’t exist, you get emore because Python
evaluates the right side before it assigns a value to

>>> x = X + 1
NameError: name

X' is not defined

Before you can update a variable, you havénitalize it, usually with a simple as-
signment:

>>> x =0
>>> x = X + 1

Updating a variable by adding 1 is calledianrement; subtracting 1 is called decre-
ment.

Since updating variables is so common, there is a syntaxcshdor these operations.
We can rewritex = x + 1 asx +=1, where the operator immediately precedes the
assignment.

>>> x =0
>>> X += 1

This shortcut works will all of our typical operators,-,*,/,/l and%

7.3. Thewhile statement 63

7.3 Thewhile statement

Computers are often used to automate repetitive tasks. a@ilegedentical or similar
tasks without making errors is something that computerselbamd people do poorly.

This repetition is also calletfieration. Because iteration is so common, Python pro-
vides several language features to make it easier. One vehtlee statement. Here is
a function calleccountdown that uses avhile statement to simulate a rocket launch
countdown:

def countdown(n):
while n > 0:
print(n)
n=n-1
print(' Blastofft ')

You can almost read thehile statement as if it were English. It means, “Whilés
greater than 0, display the value ofind then reduce the value wby 1. When you
get to 0, display the worBlastoffl ”

More formally, here is the flow of execution fomdile statement:

1. Evaluate the condition, yieldingue or False .

2. If the condition is false, exit thehile statement and continue execution at the
next statement.

3. If the condition is true, execute the body and then go bacidp 1.

This type of flow is called doop because the third step loops back around to the top.

The body of the loop should change the value of one or morabi®s so that even-
tually the condition becomes false and the loop termina@therwise the loop will
repeat forever, which is called amfinite loop. An endless source of amusement for
computer scientists is the observation that the directmmshampoo, “Lather, rinse,
repeat,” are an infinite loop.

In the case oountdown , we can prove that the loop terminates because we know that
the value of is finite, and we can see that the value gfets smaller each time through
the loop, so eventually we have to get to 0. In other casesnibt so easy to tell:

def sequence(n):

while n = 1:
print(n)
ifn% 2 ==0: # n is even
n=n/2
else: # n is odd

n=n*3+1

64 Chapter 7. Iteration

The condition for this loop i® != 1, so the loop will continue untih is 1, which
makes the condition false.

Each time through the loop, the program outputs the valneaofl then checks whether
it is even or odd. If it is evem is divided by 2. If it is odd, the value of is replaced
with n*3+1 . For example, if the argument passedeéquence is 3, the resulting se-
quence is 3, 10, 5, 16, 8, 4, 2, 1.

Sincen sometimes increases and sometimes decreases, there igioosoroof that
n will ever reach 1, or that the program terminates. For sonmécpéar values oh,
we can prove termination. For example, if the starting vadua power of two, then
the value ofh will be even each time through the loop until it reaches 1. piexious
example ends with such a sequence, starting with 16.

The hard question is whether we can prove that this progreminates forall positive
valuesof n. So far, no one has been able to proveritisprove it!

7.4 Sentinel loops

Sometimes you don’t know it’s time to end a loop until you galf lway through the
body. In that case you can sesantinelto watch for a condition and jump out of the
loop.

For example, suppose you want to take input from the usekthetj typedone. You
could write:

finished = False
while not finished:
line = input("> ")

if line == ' done" :
finished = True
else:
print(line)

print(' Done! ")

The loop condition is based on the sentifimhed , which begins aBalse , meaning
we are not finished with the loop.

Each time through, it prompts the user with an angle bradkite user typesone, the
sentinel activates and will be setTaie , which exits the loop. Otherwise the program
echos whatever the user types and goes back to the top ofdpe kere’s a sample
run:

> not done
not done
> done
Done!

7.5. Square roots 65

This way of writingwhile loops is common because you can check the condition in
multiple ways anywhere in the loop (not just at the top).

7.5 Square roots

Loops are often used in programs that compute numericaltsdsy starting with an
approximate answer and iteratively improving it.

For example, one way of computing square roots is Newton®tate Suppose that
you want to know the square rootafIf you start with almost any estimate,you can
compute a better estimate with the following formula:

_ X+a/x
2
For example, ifais 4 andx is 3:
>>> a = 4.0
>>> x = 3.0

>>y=(X+alx /2
>>> print(y)
2.16666666667

Which is closer to the correct answar4 = 2). If we repeat the process with the new
estimate, it gets even closer:

>>> X =y
>>y=(X+alx /2
>>> print(y)
2.00641025641

After a few more updates, the estimate is almost exact:

>>> X =y
>>y=(x+alx/?2
>>> print(y)
2.00001024003

>>> X =y
>>x=(x+alx /2
>>> print(y)
2.00000000003

In general we don’t know ahead of time how many steps it takigget to the right
answer, but we know when we get there because the estimatedtanging:

>>>X:y
>>y=(x+alx /2

66 Chapter 7. Iteration

>>> print(y)

2.0

>>> x =y
>>y=(x+alx/2
>>> print(y)

2.0

Wheny == x, we can stop. Here is a loop that starts with an initial esiémng and
improves it until it stops changing:

finished = False
while not finished:

print(x)
y=Kx+talx/2
if y ==x

finished = True
X =y

For most values df this works fine, but in general itis dangerous to fieast equality.
Floating-point values are only approximately right: magional numbers, like /3,
and irrational numbers, lik¢/2, can’t be represented exactly witliGat

Rather than checking whetherandy are exactly equal, it is safer to useth.fabs
to compute the absolute value, or magnitude, of the diffezdretween them:

if math.fabs(y - x) < something_small;
finished = True

Wheresomething _small has a value liked.0000001 that determines how close is
close enough.

Exercise 7.1. Wrap this loop in a function callesquare _root that takesa as a pa-
rameter, chooses a reasonable value cgdnd returns an estimate of the square root of
a.

7.6 Debugging

When you use indices to traverse the values in a sequencéridkig to get the begin-
ning and end of the traversal right. Here is a function thatiigposed to compare two
words and returfrue if one of the words is the reverse of the other, but it contains
two errors:

def is_reverse(wordl, word2):
if len(wordl) != len(word2):
return False

i=0

7.6. Debugging 67

j = len(word2)

while | > 0:
if word1[i] != word2[j]:
return False
i=i+1
j=j-1

return True

The firstif statement checks whether the words are the same lengtht, vaacan
returnFalse immediately and then, for the rest of the function, we canm&sthat the
words are the same length. This is another example of a guardi

i andj areindicesi traversesvordl forward whilej traversesvord2 backward. If we
find two letters that don't match, we can retliase immediately. If we get through
the whole loop and all the letters match, we rettinre .

If we test this function with the words “pots” and “stop”, wgpect the return value
True , but we get an IndexError:

>>> is_reverse(' pots ', 'stop ')

File "reverse.py", line 15, in is_reverse
if word1[i] '= word2][j]:
IndexError: string index out of range

For debugging this kind of error, my first move is to print thedues of the indices
immediately before the line where the error appears.

while j > 0:
print(i, j) # print here

if word1][i] != word2]j]:
return False

i=i+1

j=j-1

Now when | run the program again, | get more information:

>>> is_reverse(' pots ', 'stop ')
04

IndexError: string index out of range

The first time through the loop, the value jofis 4, which is out of range for the
string’'pots’ . The index of the last character is 3, so the initial valuejfahould
belen(word2) - 1

68 Chapter 7. Iteration

If I fix that error and run the program again, | get:

>>> is_reverse(' pots ', 'stop ')
03
12
21
True

This time we get the right answer, but it looks like the loofyaan three times, which
is suspicious. To get a better idea of what is happening, useful to draw a state
diagram. During the first iteration, the frame fer_reverse looks like this:

wordl —= ’pots’ word2 —= ’'stop’

i—=20 j— 3

| took a little license by arranging the variables in the feaamd adding dotted lines to
show that the values @fandj indicate characters wordl andword? .

7.7 Glossary

multiple assignment: Making more than one assignment to the same variable during
the execution of a program.

update: An assignment where the new value of the variable dependseooid.
initialize: An assignment that gives an initial value to a variable thidthe updated.
increment: An update that increases the value of a variable (often by.one
decrement: An update that decreases the value of a variable.

iteration: Repeated execution of a set of statements using a loop.

infinite loop: A loop in which the terminating condition is never satisfied.

7.8 Exercises

Exercise 7.2. To test the square root algorithm in this chapter, you couwdpare it
with math.sqrt . Write a function nametkst _square _root that prints a table like
this:

7.8. Exercises 69

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

1.0 1.0 0.0
1.41421356237 1.41421356237 2.22044604925e-16
1.73205080757 1.73205080757 0.0

2.0 2.0 0.0
2.2360679775 2.2360679775 0.0
2.44948974278 2.44948974278 0.0
2.64575131106 2.64575131106 0.0
2.82842712475 2.82842712475 4.4408920985¢e-16
3.0 3.0 0.0

The first column is a number, a; the second column is the sqoateof a computed
with the function from Exercise 7.1; the third column is tly@are root computed by
math.sqrt ; the fourth column is the absolute value of the differendgvben the two
estimates.

Exercise 7.3. The built-in functioneval takes a string and evaluates it using the
Python interpreter. For example:

>>eval('1+2*3")

7

>>> import math

>>> eval(' math.sgrt(5) ')
2.2360679774997898

>>> eval(' type(math.pi) ')
<class ' float ' >

Write a function calleckval _loop that iteratively prompts the user, takes the resulting
input and evaluates it usingyal , and prints the result.

It should continue until the user entédene’ , and then return the value of the last
expression it evaluated.

70

Chapter 7. Iteration

Chapter 8

Lists

8.1 Alistis a sequence

Like a string, dist is a sequence of values. In a string, the values are chasattex
list, they can be any type. The values in list are calEmentsor sometimegems.

There are several ways to create a new list; the simplestéadmse the elements in
square bracket$ @nd]):

[10, 20, 30, 40]
[' crunchy frog ', 'ram bladder ', 'lark vomit ']

The first example is a list of four integers. The second isteofishree strings. The
elements of a list don't have to be the same type. The follgWst contains a string, a
float, an integer, and (lo!) another list:

['spam', 2.0, 5, [10, 20]]
A list within another list is said to beested

A list that contains no elements is called an empty list; yan create one with empty
brackets[] .

As you might expect, you can assign list values to variables:

>>> cheeses = [' Cheddar', 'Edam , ' Gouda']
>>> numbers = [17, 123]

>>> empty = []

>>> print(cheeses, numbers, empty)

[' Cheddar', ' Edam, ' Gouda'] [17, 123] []

72 Chapter 8. Lists

8.2 Lists are mutable

The syntax for accessing the elements of a list is the sanmm as¢essing the charac-
ters of a string—the bracket operatfir J. The expression inside the brackets specifies
the index. Remember that the indices start at O:

>>> print(cheeses[0])
Cheddar

Unlike strings, lists are mutable. When the bracket opeigdpears on the left side of
an assignment, it identifies the element of the list that béllassigned.

>>> numbers = [17, 123]
>>> numbers[l] = 5

>>> print(numbers)

[17, 9]

You can think of a list as a relationship between indices dahents. This relationship
is called amapping; each index “maps to” one of the elements. Here is a stateatiag
showingcheeses , numbers andempty :

list

cheeses —= 0 —= ’'Cheddar’
1 —= 'Edam’

2 — 'Gouda’

wumbers —= 0—— 17

list

empty —=

Lists are represented by boxes with the word “list” outside ¢he elements of the
list inside. cheeses refers to a list with three elements indexed 0, 1 andufbers
contains two elements; the diagram shows that the valueeofdicond element has
been reassigned from 123 toépty refers to a list with no elements.

The bracket operator can appear anywhere in an expressioan Whppears on the
left side of an assignment, it changes one of the elementseirtidt, so the one-eth
element ohumbers , which used to be 123, is now 5.

List indices work the same way as string indices:

8.3. List operations 73

« Any integer expression can be used as an index.
« If you try to read or write an element that does not exist, getianindexError

« If an index has a negative value, it counts backward fronetiweof the list.

8.3 List operations

The+ operator concatenates lists:

>>> a =1, 2, 3]
>>> b = [4, 5, 6]
>>c=a+bh
>>> print(c)

[1, 2, 3, 4, 5, 6]

Similarly, the* operator repeats a list a given number of times:

>>> [0] * 4

[0, 0, 0, 0]

>>> 1, 2, 3] * 3

1,2 3 1 2 3,1, 2 3

The first example repeafd] four times. The second example repeats thgljs,
3] three times.

8.4 Listslices

The slice operator also work on lists:

>>t=["'a, 'b, 'c, "d, e, "]
>>> {[1.3]

(b,]

>>> {[:4]

["a", "b'", "¢, "d']

>>>]3]

["d, "e', "f']

If you omit the first index, the slice starts at the beginniliggou omit the second, the
slice goes to the end. So if you omit both, the slice is a cogh®fvhole list.

>>> {[]]
[*a", "b", "¢, "d, "e, "f']

A slice operator on the left side of an assignment can updatépte elements:

74 Chapter 8. Lists

>>t=["a, 'b, "¢, d, e,]
>> {13l = "x', "y']

>>> print(t)

[fa', "x', "y, "d, e, "f']

8.5 List methods

Python provides methods that operate on lists. For exarappend adds a new ele-
ment to the end of a list:

>>t=["a, 'b, '"c¢']
>>> tappend('d')

>>> print(t)

["a', '"b'", 'c', "d]

extend takes a list as an argument and appends all of the elements:

>>tl=["a, 'b, 'c']
>>R=["'d, 'e']

>>> tl.extend(t2)

>>> print(tl)

["a", "b'", 'c', "d, "e']

This example leavel?2 unmodified.
sort arranges the elements of the list from low to high:

>>t=["d, 'c, 'e, "b, "a]
>>> t.sort()

>>> print(t)
[Ialllbl’lcl’ldlllel]

List methods are all void; they modify the list and retiNone. If you accidentally
writet = t.sort() , you will be disappointed with the result.

8.6 Deleting elements

There are several ways to delete elements from a list. If ymwkthe index of the
element you want, you can upep:

>>t=["'a, 'b, '"¢c']
>>> x = t.pop(1)

>>> print(t)

[ra, ']

>>> print(x)

b

8.7. Objects and values 75

pop modifies the list and returns the element that was removed.
If you don't need the removed value, you can useddieoperator:
>>>t:['a"|bl’lcl]

>>> del t[1]

>>> print(t)

[I aI , L} CI]

If you know the element you want to remove (but not the indga) can useemove :
>>>t:['a'vlbl7lcl]

>>> tremove('b')

>>> print(t)

[I al ,] Cl]

The return value fromemove is None.

To remove more than one element, you candebewith a slice index:
>>>t:[lal’lbl7ICI’ldlllel7lfl]

>>> del {[1:5]

>>> print(t)

[1 al ,] f]]

As usual, the slice selects all the elements up to, but nbtdirg, the second index.

8.7 Objects and values

If we execute these assignment statements:

' banana"
' banana'

a
b

We know thata andb both refer to a string, but we don’t know whether they refer to
thesamestring. There are two possible states:

a —= 'banana’ a~_

‘banana’
b —= ’banana’ b —

In one casea andb refer to two different objects that have the same value. én th
second case, they refer to the same object.

To check whether two variables refer to the same object, gowse thés operator.

76 Chapter 8. Lists

>>> a = ' banana'
>>> b = ' banana'
>>> ais b

True

In this example, Python only created one string object, artdd&gandb refer to it.
In contrast, when you create two lists, you get two objects:

>>>a =[1, 2, 3]
>>> b =1, 2, 3]
>>> ais b

False

So the state diagram looks like this:

a—=1[1,2, 3]
b—=1[1,2, 3]

In this case we would say that the two lists atpiivalent, because they have the same
elements, but natentical, because they are not the same object. If two objects are
identical, they are also equivalent, but if they are egenglthey are not necessarily
identical.

Until now, we have been using “object” and “value” interchaably, but it is more
precise to say that an object has a value. If you exexute[1,2,3] , arefersto a list
object whose value is a particular sequence of elementsiothar list has the same
elements, we would say it has the same value.

8.8 Aliasing

If a refers to an object and you assigr= a, then both variables refer to the same
object. For example, if you execute:

>>>a =1, 2, 3]
>>> h = a

Thena andb refer to the same list. The state diagram looks like this:

a
\
L= [123]

The association of a variable with an object is calledfarence In this example, there
are two references to the same object.

8.9. List arguments 77

An object with more than one reference has, in some sense than one name, so
we say that the object &liased

If the aliased object is mutable, changes made with one affast the other:

>>> b[0] = 17
>>> print(a)
[17, 2, 3]

Although this behavior can be useful, it is sometimes unetqutor undesirable. In
general, it is safer to avoid aliasing when you are workinthwiutable objects.

For immutable objects like strings, aliasing is not as mufch groblem. In this exam-
ple:

' banana'
' banana'

a
b

It almost never makes a difference whethemdb refer to the same string or not.

8.9 Listarguments

When you pass a list to a function, the function gets a referémthe list. If the func-
tion modifies a list parameter, the caller sees the changeexampledelete _head
removes the first element from a list:

def delete_head(t):
del t[0]

Here’s how it is used:

>>> letters = ['a', 'b'", 'c¢']
>>> delete_head(letters)

>>> print(letters)

[0 e

The parameter and the variabléetters are aliases for the same object. The stack
diagram looks like this:

list

__main__ letters —|
\ O = 1a1

/ 1 —= b

2—=717

lelete_head t

Since the list is shared by two frames, | drew it between them.

78 Chapter 8. Lists

If a function returns a list, it returns a reference to the kor exampletail returns a
list that contains all but the first element of the given list:

def tail(t):
return t[1:]

Here’s howtail is used:

>>> letters = ['a', 'b', 'c¢']

>>> rest = tail(letters)

>>> print(rest)

[I bl , ' CI]

Because the return value was created with the slice opeiiafisra new list. The
original list is unmodified.

8.10 Copying lists

When you assign an object to a variable, Python copies theerefe to the object.

>>> a = [1, 2, 3]
>>> ph = a

In this casea andb refer to the same list.
If you want to copy the list (not just a reference to it), yomeee the slice operator:

>>>a = [1, 2, 3
>>> b = a[]

>>> print(b)

[1, 2, 3

Making a slice ofa creates a new list. In this case the slice contains all of lgr@ents
from the original list.

Another way to make a copy is tleepy function from thecopy module:

>>> import copy

>>> a = [1, 2, 3]
>>> b = copy.copy(a)
>>> print(b)

But it is more idiomatic to use the slice operator.

8.11 Lists and strings

A string is a sequence of characters and a list is a sequeneguads, but a list of
characters is not the same as a string. To convert from aydtria list of characters,
you can use thiist function:

8.11. Lists and strings 79

>>> s = ' spam’

>>> t = list(s)

>>> print(t)

['s',]

list breaks a string into individual letters. If you want to bresaktring into words,
you can use theplit method:

>>> s = ' pining for the fjords
>>> t = s.split()

>>> print(t)

['pining ', "for ", "the', "fiords ']

An optional argument called delimiter specifies which characters to use as word
boundaries. The following example use$s (a comma followed by a space) as the
delimiter:

>>> s = ' spam, spam, spam '
>>> delimiter = Y
>>> s.split(delimiter)

['spam', 'spam', ' spam']

join is the inverse ofplit . It takes a list of strings and concatenates the elements.
join is a string method, so you have to invoke it on the delimitet pass the list as a
parameter:

>>>t = 'pining ', 'for
>>> delimiter = t
>>> delimiter.join(t)

' pining for the fjords

, "the', 'fiords ']

In this case the delimiter is a space charactejpiso puts a space between words. To
concatenate strings without spaces, you can use the emipty, §t as a delimiter.

80

Chapter 8. Lists

Chapter 9

For Loops

9.1 Traversing a string

A lot of computations involve processing a string one chi@raat a time. Often they
start at the beginning, select each character in turn, degony to it, and continue
until the end. This pattern of processing is callettaversal. One way to write a
traversal is with avhile statement:

index = 0

while index < len(fruit):
letter = fruitfindex]
print(letter)
index += 1

This loop traverses the string and displays each letter oneably itself. The loop
condition isindex < len(fruit) , SO wherindex is equal to the length of the string,
the condition is false, and the body of the loop is not exatut€he last character
accessed is the one with the inder(fruit)-1 , Which is the last character in the
string.

Exercise 9.1. Write a function that takes a string as an argument and digple
letters backward, one per line.

Another way to write a traversal is withfer loop:

for char in fruit:
print(char)

Each time through the loop, the next character in the stsragsigned to the variable
char . The loop continues until no characters are left.

The following example shows how to use concatenation (gtaiddition) and dor
loop to generate an abecedarian series (that is, in algbabetder). In Robert Mc-

82 Chapter 9. For Loops

Closkey’s bookviake Way for Ducklingsthe names of the ducklings are Jack, Kack,
Lack, Mack, Nack, Ouack, Pack, and Quack. This loop outgésd names in order:

prefixes = ' JKLMNOPQ
suffix = ' ack’

for letter in prefixes:
print(letter + suffix)

The output is:

Jack
Kack
Lack
Mack
Nack
Oack
Pack
Qack

Of course, that’s not quite right because “Ouack” and “Quack misspelled.
Exercise 9.2. Modify the program to fix this error.

9.2 Traversing a list

The most common way to traverse the elements of a list is wiith doop. The syntax
is the same as for strings:

for cheese in cheeses:
print(cheese)

This works well if you only need to read the elements of the IBut if you want to
write or update the elements, you need the indices. A comnantw do that is to
combine the functionsange andlen :

for i in range(len(numbers)):
numbers[i] = numbers]i] * 2

This loop traverses the list and updates each elenemtreturns the number of ele-
ments in the listrange returns a list of indices from 0 to— 1, wheren is the length of

the list. Each time through the loopgets the index of the next element. The assign-
ment statement in the body use® read the old value of the element and to assign the
new value.

range can also take more arguments. With two argumenatgje returns a list that
contains all the integers from the first to the second, iriolgithe first but not including

9.3. Afind function 83

the second! If there is a third argument, it specifies the egmtween successive
values, which is called the “step size.”

A for loop over an empty list never executes the body:

for x in empty:
print(' This never happens. ')

Although a list can contain another list, the nested ligt ®biunts as a single element.
The length of this list is four:

['spam!', 1, ['Brie ", 'Roquefort ', 'Pol le Veq '], [1, 2, 3]

9.3 Afind function

What does the following function do?

def find(word, letter):
index = 0
while index < len(word):
if word[index] == letter:
return index
index = index + 1
return -1

This use of loops is the basic logic behind find method discussed earlier.

This is the first example we have seen ofeturn statement inside a loop. If
word[index] == letter , the function breaks out of the loop and returns immedi-
ately.

If the character doesn'’t appear in the string, the prograits éxe loop normally and
returns-1.

This pattern of computation—traversing a sequence andmiaetuwhen we find what
we are looking for—is a called search

Exercise 9.3.Modifyfind so that it has a third parameter, the indexviord where it
should start looking.

9.4 Looping and counting

The following program counts the number of times the ledgtappears in a string:

word = ' banana'
count = 0
for letter in word:

84 Chapter 9. For Loops

if letter == a':
count = count + 1
print(count)

This program demonstrates another pattern of computasibedcacounter. The vari-
ablecount is initialized to 0 and then incremented each timeaas found. When the
loop exits,count contains the result—the total numberad.

Exercise 9.4. Encapsulate this code in a function nantednt , and generalize it so
that it accepts the string and the letter as arguments.

Exercise 9.5. Rewrite this function so that instead of traversing thergjyiit uses the
three-parameter version @iid from the previous section.

9.5 Thein operator

The operators we have seen so far are all special charakestsdnd*, but there are a
few operators that are words. is a boolean operator that takes two strings and returns
True if the first appears as a substring in the second:

>>> "an' in ' banana’
True
>>> ' ¢
False

in ' banana'

For example, the following function prints all the lettererh word1 that also appear
in word2 :

def in_both(wordl, word2):
for letter in wordl:

if letter in word?2:
print(letter)

With well-chosen variable names, Python sometimes re&dsHnglish. You could
read this loop, “for (each) letter in (the first) word, if (hketter (appears) in (the
second) word, print (the) letter.”

Here’s what you get if you compare apples and oranges:

>>> in_both(' apples
a
e
s

, 'oranges ')

Thein operator also works on lists.

>>> cheeses = [' Cheddar', ' Edam , ' Gouda']
>>> ' Edaml in cheeses
True

9.6. break 85

>>> ' Brie ' in cheeses
False

9.6 bhreak

As with while loops, sometimes you don’t know it’s time to eador loop until you
get half way through the body. Since we can't reset a sentadak to exit the loop, in
this case we use theeak statement to jump out of the loop.

For example, suppose you want to count the number of timesahe&”lemur” appears
in a list, but stop early if you see the word "done”. You couldte:.

count = 0
animals = ['cat', 'lemur', "fox', 'rabbit ', 'lemur', 'done', 'lemur ']
for item in animals:
if item == ' lemur ' :
count += 1
elif item == ' done" :
break
print(count)

The loop now runs until either it consumes all elements ofligteor it hits the break
statement, and count will be equal to 2 after execution.

9.7 Map, filter and reduce

To add up all the numbers in a list, you can use a loop like this:

def add_all(t):
total = 0
for x in t:
total += X
return total

total is initialized to 0. Each time through the loopgets one element from the list.
The+= operator provides a short way to update a variable:

total += x
is equivalent to:

total = total + X

86 Chapter 9. For Loops

As the loop executesgtal accumulates the sum of the elements; a variable used this
way is sometimes called atcumulator.

Adding up the elements of a list is such a common operatiarPyhon provides it as
a built-in function,sum:

>>>t = [, 2, 3
>>> sum(t)
6

An operation like this that combines a sequence of elemetsd single value is
sometimes calleteduce

Sometimes you want to traverse one list while building aeothFor example, the
following function takes a list of strings and returns a nawthat contains capitalized
strings:

def capitalize_all(t):
res =]
for s in t:
res.append(s.capitalize())
return res

res is initialized with an empty list; each time through the lpoyge append the next
element. Saoes is another kind of accumulator.

An operation likecapitalize _all is sometimes called map because it “maps” a
function (in this case the methaodpitalize) onto each of the elements in a sequence.

Another common operation is to select some of the elemeais & list and return a
sublist. For example, the following function takes a lisstifngs and returns a list that
contains only the uppercase strings:

def only_upper(t):
res =]
for s in t:
if s.isupper():
res.append(s)
return res

isupper is a string method that returrisue if the string contains only upper case
letters.

An operation likeonly _upper is called #filter because it selects some of the elements
and filters out the others.

Most common list operations can be expressed as a combinaftimap, filter and
reduce. Because these operations are so common, Pythddgsdanguage features
to support them, including the built-in functiseduce and an operator called a “list
comprehension.” But these features are idiomatic to Pytkorl won’t go into the
details.

9.8. Debugging 87

Exercise 9.6. Write a function that takes a list of numbers and returns tivglative
sum; that is, a new list where the ith element is the sum ofitbtd fi- 1 elements from
the original list. For example, the cumulative sunmjlof2, 3] is[l, 3, 6]

9.8 Debugging

When you are debugging a program, and especially if you ar&imgon a hard bug,
there are four things to try:

reading: Examine your code, read it back to yourself, and check thaeins what
you meant to say.

running: Experiment by making changes and running different vessi@ften if you
display the right thing at the right place in the program, pineblem becomes
obvious, but sometimes you have to spend some time to buftbéting.

ruminating: Take some time to think! What kind of error is it: syntax, rume, log-
ical? What information can you get from the error messagefsoor the output
of the program? What kind of error could cause the problemrgoséeing?
What did you change last, before the problem appeared?

retreating: At some point, the best thing to do is back off, undoing rearanges,
until you get back to a program that works, and that you urideds Then you
can starting rebuilding.

Beginning programmers sometimes get stuck on one of theséias and forget the
others. Each activity comes with its own failure mode.

For example, reading your code might help if the problem igoagraphical error, but
not if the problem is a conceptual misunderstanding. If you'cinderstand what your
program does, you can read it 100 times and never see theleoause the error is in
your head.

Running experiments can help, especially if you run smiatipe tests. But if you run
experiments without thinking or reading your code, you righi into a pattern | call

“random walk programming,” which is the process of makingdam changes until
the program does the right thing. Needless to say, randokpragramming can take
along time.

The way out is to take more time to think. Debugging is like gapezimental science.
You should have at least one hypothesis about what the pnaklelf there are two or
more possibilities, try to think of a test that would elimi@@ne of them.

Taking a break sometimes helps with the thinking. So do&sl If you explain the
problem to someone else (or even yourself), you will somestifind the answer before
you finish asking the question.

88 Chapter 9. For Loops

But even the best debugging techniques will fail if theretatemany errors, or if the
code you are trying to fix is too big and complicated. Somedithe best option is to
retreat, simplifying the program until you get to someththgt you understand, and
that works.

Beginning programmers are often reluctant to retreat, lmcthey can't stand to delete
a line of code (even if it's wrong). If it makes you feel betteopy your program into
another file before you start stripping it down. Then you cast@ the pieces back in a
little bit at a time.

To summarize, here’s the Fifth Theorem of debugging:

Finding a hard bug requires reading, running, ruminatimgl, gometimes
retreating. If you get stuck on one of these activities, ey dthers.

9.9 Glossary

list: A sequence of values.

element: One of the values in a list (or other sequence), also cakedst
index: An integer value that indicates an element in a list.

nested list: A list that is an element of another list.

list traversal: The sequential accessing of each element in a list.

mapping: A relationship in which each element of one set corresponds telement
of another set. For example, a list is a mapping from indioedéments.

accumulator: A variable used in a loop to add up or accumulate a result.

reduce: A processing pattern that traverses a sequence and accemilla elements
into a single result.

map: A processing pattern that traverses a sequence and perérroperation on
each element.

filter: A processing pattern that traverses a list and selects #meesits that satisfy
some criterion.

object: Something a variable can refer to. An object has a type antLa.va
equivalent: Having the same value.

identical: Being the same object (which implies equivalence).
reference: The association between a variable and its value.

aliasing: A circumstance where two variables refer to the same object.

delimiter: A character or string used to indicate where a string shoelsidtit.

9.10. Exercises 89

9.10 Exercises

Exercise 9.7.Write a function calleds _sorted that takes a list as a parameter and
returns True if the list is sorted in ascending order arkdlse otherwise. You can

assume (as a precondition) that the elements of the list easompared with the com-
parison operators, >, etc.

For examplejs _sorted([1,2,2]) should returnTrue andis _sorted(['b’,’a])
should returnFalse .

90

Chapter 9. For Loops

Chapter 10

Recursion

10.1 Recursion

It is legal for one function to call another; it is also legat fa function to call itself.
It may not be obvious why that is a good thing, but it turns aulb¢ one of the most
magical things a program can do. For example, look at theviatig function:

def countdown(n):
if n <= 0:
print(' Blastofft ')
else:
print(n)
countdown(n-1)

If nis O or negative, it outputs the word, “Blastoff!” Otherwjseoutputsn and then
calls a function namecbuntdown —itself—passing-1 as an argument.

What happens if we call this function like this?
>>> countdown(3)

The execution ofountdown begins withn=3, and sincen is greater than 0, it outputs
the value 3, and then calls itself...

The execution otountdown begins withn=2, and sincen is greater than
0, it outputs the value 2, and then calls itself...

The execution ofountdown begins withn=1, and sincen is
greater than 0, it outputs the value 1, and then calls itself.

The execution oftountdown begins withn=0, and
sincen is not greater than 0, it outputs the word,
“Blastoff!” and then returns.

92 Chapter 10. Recursion

Thecountdown that gotn=1 returns.

Thecountdown that gotn=2 returns.

Thecountdown that gotn=3 returns.

And then you're back in_main __. So, the total output looks like this:

3
2
1
Blastoff!

A function that calls itself isecursive; the process is callegcursion.

As another example, we can write a function that prints agtritimes.

def print_n(s, n):
if n <= 0:
return
print(s)
print_n(s, n-1)

If n <= 0 thereturn statement exits the function. The flow of execution immexdyat
returns to the caller, and the remaining lines of the fumctice not executed.

The rest of the function is similar muntdown : if n is greater than 0, it displaysand
then calls itself to display n— 1 additional times. So the number of lines of output is
1+ (n - 1) which, if you do your algebra right, comes outrto

For simple examples like this, it is probably easier to ug® aloop. But we will see
examples later that are hard to write witfoa loop and easy to write with recursion,
so it is good to start early.

10.2 Stack diagrams for recursive functions

In Section 6.7, we used a stack diagram to represent thedftat@rogram during a
function call. The same kind of diagram can help interpretarsive function.

Every time a function gets called, Python creates a new ilmmétame, which contains
the function’s local variables and parameters. For a re@ifanction, there might be
more than one frame on the stack at the same time.

This figure shows a stack diagram fmuntdown called withn = 3:

10.3. Infinite recursion 93

__main__

countdown n— 3
countdown n—s 2
countdown n— 1
countdown n—=0

As usual, the top of the stack is the frame famain __. It is empty because we did not
create any variables inmain __ or pass any arguments to it.

The fourcountdown frames have different values for the parametemhe bottom of
the stack, where=0, is called thébase caselt does not make a recursive call, so there
are no more frames.

Draw a stack diagram fqmint _n called withs = 'Hello’ andn=4.

10.3 Infinite recursion

If a recursion never reaches a base case, it goes on makumgiveccalls forever, and
the program never terminates. This is knowrird#ite recursion, and it is generally
not a good idea. Here is a minimal program with an infinite reicun:

def recurse():
recurse()

In most programming environments, a program with infiniteursion does not really
run forever. Python reports an error message when the maxireaursion depth is
reached:

File "<stdin>", line 2, in recurse
File "<stdin>", line 2, in recurse
File "<stdin>", line 2, in recurse

File "<stdin>", line 2, in recurse
RuntimeError: Maximum recursion depth exceeded

This traceback is a little bigger than the one we saw in theipus chapter. When the
error occurs, there are 10@&urse frames on the stack!

94 Chapter 10. Recursion

10.4 More recursion

We have only covered a small subset of Python, but you miglteeested to know
that this subset is eompleteprogramming language, which means that anything that
can be computed can be expressed in this language. Any pragyrer written could

be rewritten using only the language features you have éelaso far (actually, you
would need a few commands to control devices like the keyhoaouse, disks, etc.,
but that's all).

Proving that claim is a nontrivial exercise first accompidtby Alan Turing, one of
the first computer scientists (some would argue that he waathematician, but a lot
of early computer scientists started as mathematiciansgodingly, it is known as
the Turing Thesis. If you take a course on the Theory of Coatjn, you will have a
chance to see the proof.

To give you an idea of what you can do with the tools you havenksd so far, we'll
evaluate a few recursively defined mathematical functiohgecursive definition is
similar to a circular definition, in the sense that the ddfinitcontains a reference to
the thing being defined. A truly circular definition is not yerseful:

frabjuous: An adjective used to describe something that is frabjuous.

If you saw that definition in the dictionary, you might be apad. On the other hand,
if you looked up the definition of the factorial function, d#ed with the symbol !, you
might get something like this:

ol=1

nl =n(n—1)!
This definition says that the factorial of 0 is 1, and the fedat®f any other valuen, is
n multiplied by the factorial ofi — 1.

So 3!lis 3 times 2!, which is 2 times 1!, which is 1 times O!. Ihgtit all together, 3!
equals 3 times 2 times 1 times 1, which is 6.

If you can write a recursive definition of something, you cawally write a Python
program to evaluate it. The first step is to decide what tharpaters should be. In this
case it should be clear th@attorial has a single parameter:

def factorial(n):
If the argument happens to be 0, all we have to do is return 1:

def factorial(n):
if n ==
return 1

Otherwise, and this is the interesting part, we have to makewarsive call to find the
factorial ofn— 1 and then multiply it byn:

10.4. More recursion 95

def factorial(n):
if n ==
return 1
else:
recurse = factorial(n-1)
result = n * recurse
return result

The flow of execution for this program is similar to the flow asiuntdown in Sec-
tion 10.1. If we callfactorial with the value 3:

Since 3 is not 0, we take the second branch and calculatedtwitd ofn-1 ...

Since 2 is not 0, we take the second branch and calculate ¢taritd of
n-1..

Since 1 is not 0, we take the second branch and calculate the
factorial ofn-1 ...

Since Ois 0, we take the first branch and return 1 with-
out making any more recursive calls.

The return value (1) is multiplied by, which is 1, and the result
is returned.

The return value (1) is multiplied by, which is 2, and the result is re-
turned.

The return value (2) is multiplied by, which is 3, and the result, 6, becomes the return
value of the function call that started the whole process.

Here is what the stack diagram looks like for this sequendaradtion calls:

__main__

) 6
factorial n—— 3 recurse —= 2 return —= 6

j 2
factorial n— 2 recurse — 1 return — 2

j 1
factorial n—1 recurse — 1 return — 1

j 1
factorial n—20

The return values are shown being passed back up the stae&cinframe, the return
value is the value afesult , which is the product of andrecurse

96 Chapter 10. Recursion

In the last frame, the local variablescurse andresult do not exist, because the
branch that creates them did not execute.

10.5 Leap of faith

Following the flow of execution is one way to read programsjtatan quickly become
labyrinthine. An alternative is what | call the “leap of fait When you come to a
function call, instead of following the flow of execution,lyassumehat the function
works correctly and returns the right result.

In fact, you are already practicing this leap of faith whem yse built-in functions.
When you callmath.cos or math.exp , you don’t examine the bodies of those func-
tions. You just assume that they work because the people wbie whe built-in func-
tions were good programmers.

The same is true when you call one of your own functions. Famngle, in Sec-
tion 6.10, we wrote a function callesl _divisible ~ that determines whether one num-
ber is divisible by another. Once we have convinced oursetlat this function is
correct—examining the code and testing—we can use the funafilliout looking at
the code again.

The same is true of recursive programs. When you get to thesigelcall, instead
of following the flow of execution, you should assume that tbeursive call works
(yields the correct result) and then ask yourself, “Assuntirat | can find the factorial
of n—1, can | compute the factorial of?” In this case, it is clear that you can, by
multiplying by n.

Of course, it's a bit strange to assume that the function saderectly when you
haven't finished writing it, but that’s why it's called a leapfaith!

10.6 One more example

After factorial , the most common example of a recursively defined matheatatic
function isfibonacci , which has the following definition:

fibonacc{0)
fibonacc{1)
fibonacc{n) = fibonacc{n— 1) +fibonacc{n— 2);

0
1

Translated into Python, it looks like this:

def fibonacci (n):
if n ==
return 0

10.7. Checking types 97

elf n==1
return 1
else:
return fibonacci(n-1) + fibonacci(n-2)

If you try to follow the flow of execution here, even for fairgmall values of, your
head explodes. But according to the leap of faith, if you amsthat the two recursive
calls work correctly, then itis clear that you get the rigegult by adding them together.

10.7 Checking types

What happens if we calhctorial and give it 1.5 as an argument?

>>> factorial(1.5)
RuntimeError: Maximum recursion depth exceeded

It looks like an infinite recursion. But how can that be? Thiera base case—when
== 0. Butif nis not an integer, we camissthe base case and recurse forever.

In the first recursive call, the value ofis 0.5. In the next, it is -0.5. From there, it gets
smaller and smaller, but it will never be 0.

We have two choices. We can try to generalizeftittorial function to work with
floating-point numbers, or we can mateetorial check the type of its argument.
The first option is called the gamma function and it's a litilyond the scope of this
book. So we’ll go for the second.

We can use the built-in functiasinstance to verify the class of the argument. While
we're at it, we can also make sure the argument is positive:

def factorial (n):

if not isinstance(n, int):
print(' Factorial is only defined for integers. ")
return None

elif n < 0:
print(' Factorial is only defined for positive integers. ")
return None

elif n ==
return 1

else:
return n * factorial(n-1)

Now we have three base cases. The first catches nonintegktheasecond catches
negative integers. In both cases, the program prints an message and returiene
to indicate that something went wrong:

98 Chapter 10. Recursion

>>> factorial("fred ')
Factorial is only defined for integers.
None

>>> factorial(-2)
Factorial is only defined for positive integers.
None

If we get past both checks, then we know thas a positive integer, and we can prove
that the recursion terminates.

This program demonstrates a pattern sometimes calieualian. The first two con-
ditionals act as guardians, protecting the code that fallfivam values that might cause
an error. The guardians make it possible to prove the coresstof the code.

10.8 Hints

If you played with thefibonacci function from Section 10.6, you might have no-
ticed that the bigger the argument you provide, the longerftimction takes to run.
Furthermore, the run time increases very quickly.

To understand why, consider thdall graph for fibonacci ~ with n=4:

fibonacci
n—s4
fibonacci fibonacci
n— 3 n— 2
fibonacci fibonacci fibonacci fibonacci
n— 2 n—1 n—1 n— 0
fibonacci fibonacci
n—1 n—0

A call graph shows a set function frames, with lines conmgcgach frame to the
frames of the functions it calls. At the top of the grafihgnacci with n=4 calls
fibonacci with n=3 andn=2. In turn,fibonacci with n=3 callsfibonacci with n=2
andn=1. And so on.

Count how many timefibonacci(0) andfibonacci(1) are called. This is an inef-
ficient solution to the problem, and it gets worse as the asgumets bigger.

One solution is to keep track of values that have already lseemputed by storing
them in a list. A previously computed value that is storeddter use is called hint.
Here is an implementation dibonacci using hints:

10.9. Debugging 99

previous = [0, 1]

def fibonacci(n):
if n < len(previous):
return previous[n]

res = fibonacci(n-1) + fibonacci(n-2)
previous.append(res)
return res

previous keeps track of the Fibonacci numbers we already know. We\sttr only
two items: 0 and 1.

Wheneveffibonacci is called, it check®revious . If the result is already there, it
can return immediately. Otherwise it has to compute the rewey append it to the
previous list, and return it.

previous is created outside the function, so it belongs to the spdicate called
__main __. Variables in__main __ are sometimes calleglobal because they can be ac-
cessed from any function. Unlike local variables, whichagigear when their function
ends, global variables persist from one function call tortét.

Using this version ofibonacci , you can computébonacci(40) in an eyeblink. If
you computdibonacci(50) , You get:

>>> fibonacci(50)
12586269025

10.9 Debugging

Breaking a large program into smaller functions createsrabtheckpoints for debug-
ging. If a function is not working, there are three possiigiti to consider:

* There is something wrong with the arguments the functiayetsing.
* There is something wrong with the function.

* There is something wrong with the return value or the wagy [iging used.

To rule out the first possibility, you can adgent statement at the beginning of the
function and display the values of the parameters (and mingietypes).

If the parameters look good, addpant statement before eaahturn statement
that displays the return value. If possible, check the tdsylhand. If necessary,
call the function with special values where you know whatrémsult should be (as in
Section 6.11).

100 Chapter 10. Recursion

If the function seems to be working, look at the function ¢almake sure the return
value is being used correctly (or used at all!).

Adding print functions at the beginning and end of a functtan help make the flow
of execution more visible. For example, here is a versiofadbrial with print
functions:

def factorial(n):

space = "' * (4 * n)

print(space, ' factorial ', n)

if n ==
print(space, "returning 1 ')
return 1

else:

recurse = factorial(n-1)
result = n * recurse
print(space, ' returning
return result

, result)

space is a string of space characters that controls the indentatithe output. Here
is the result ofactorial(5)

factorial 5
factorial 4
factorial 3
factorial 2
factorial 1
factorial 0
returning 1
returning 1
returning 2
returning 6
returning 24
returning 120

If you are confused about the flow of execution, this kind dipoi can be helpful. It
takes some time to develop effective scaffolding, but atiogrto the Sixth Theorem
of Debugging:

A little bit of scaffolding can save a lot of debugging.

10.10 Glossary
recursion: The process of calling the function that is currently exiut

base case:A conditional branch in a recursive function that does nokemarecursive
call.

10.11. Exercises 101

infinite recursion: A function that calls itself recursively without ever reaui the
base case. Eventually, an infinite recursion causes a remimr.

10.11 Exercises

Exercise 10.1.Draw a stack diagram for the following program. What does phe
gram print?
def b(2):

prod = a(z, z)

print(z, prod)

return prod

def a(x, y):
X=x+1
return x *y

def c(x, y, 2):
sum = X +y +z
pow = b(sum)**2

return pow
x =1
y=x+1

print(c(x, y+3, x+y))

102 Chapter 10. Recursion

Chapter 11

Files

11.1 Persistence

Most of the programs we have seen so far are transient in tige gbat they run for a
short time and produce some output, but when they end, ta&rdisappears. If you
run the program again, it starts with a clean slate.

Other programs argersistent they run for a long time (or all the time); they keep at
least some of their data in non-volatile storage (a harcedfir example); and if they
shut down and restart, they pick up where they left off.

Examples of persistent programs are operating systemshwann pretty much when-
ever a computer is on, and web servers, which run all the tivaéing for requests to
come in on the network.

One of the simplest ways for programs to maintain their dabgyireading and writing
text files. We have already seen programs that read text ifilékis chapters we will
see programs that write them.

An alternative is to store the state of the program in a dagbhn this chapter | will
present a simple database and a mochitkle , that makes it easy to store program
data.

11.2 Reading and writing

Atext file is a sequence of characters stored on a permanetitmdike a hard drive,
flash memory, or CD-ROM. To read a file, you can open to create a file object:

>>> fin = open(' words.txt ')
>>> print(fin)
<open file ' words.txt

, mode 'r' at Oxb7eb2380>

104 Chapter 11. Files

Mode'r means that this file is open for reading. The file object presideveral
methods for reading data, includingadline

>>> line = fin.readline()
>>> print(line)
aa

The file object keeps track of where it is in the file, so if youdkereadline again,
it picks up from where it left off. You can also use a file objecs for loop.

To write a file, you have to create a file object with mosdle as a second parameter:

>>> fout = open('outputtxt ', 'w)
>>> print(fout)
<open file ' outputtxt ', mode 'w at Oxb7eb2410>

If the file already exists, opening it in write mode clears the old data and starts
fresh, so be careful! If the file doesn’t exist, a new one istze.

Thewrite method puts data into the file.

>>> linel = "This here ''s the wattle,\n"
>>> fout.write(linel)

Again, the file object keeps track of where it is, so if you ealte again, it add the
new data to the end.

>>> line2 = "the emblem of our land.\n"
>>> fout.write(line2)

When you are done writing, you have to close the file.

>>> fout.close()

11.3 Format operator

The argument ofirite has to be a string, so if we want to put other values in a file, we
have to convert them to strings. The easiest way to do thaitlissty :

>>> x = 52
>>> fwrite(str(x))

An alternative is to use thfsrmat operator, % When applied to integer$pis the
modulus operator. But when the first operand is a stfig,the format operator.

The first operand is thiermat string , and the second operand is a tuple of expressions.
The result is a string that contains the values of the exjmessformatted according
to the format string.

11.4. Filenames and paths 105

As an example, thiormat sequence%d’ means that the first expression in the tuple
should be formatted as an integérstands for “decimal”):

>>> camels = 42
>>> ' %d % camels
1 42I

The result is the strin@?2’ , which is not to be confused with the integer valize

A format sequence can appear anywhere in the format staingscan embed a value
in a sentence:

>>> camels = 42
>>> ' | have spotted %d camels.
"| have spotted 42 camels. '

% camels

The format sequencéeg’ formats the next element in the tuple as a floating-point
number (don't ask why), anés’ formats the next item as a string:

>>> ' In %d years | have spotted %g %s. ' % (3, 0.1, ' camels')
"In 3 years | have spotted 0.1 camels. '

By default, the floating-point format prints six decimal qés.

The number of elements in the tuple has to match the numberofat sequences in
the string. Also, the types of the elements have to matchaimedt sequences:

>>> ' %d %d %d % (1, 2)

TypeError: not enough arguments for format string
>>> ' %d %' dollars

TypekError: illegal argument type for built-in operation

In the first example, there aren’t enough elements; in therskcthe element is the
wrong type.

You can specify the number of digits as part of the format saqa. For example,
the sequenc®08.2f formats a floating-point number to be 8 characters long, @ith
digits after the decimal point:

>>> ' 008.2f ' % 3.14159
' 3.14"

The result takes up eight spaces with two digits after thénaqoint.

11.4 Filenames and paths

Files are organized intirectories (also called “folders”). Every running program has
a “current directory,” which is the default directory for st@perations. For example,

106 Chapter 11. Files

when you create a new file wittpen, the new file goes in the current directory. And
when you open a file for reading, Python looks for it in the eatrdirectory.

The moduleos provides functions for working with files and directorieg” stands
for “operating system”)os.getcwd returns the name of the current directory:

>>> import 0s
>>> cwd = o0s.getcwd()
>>> print(cwd)
/home/dinsdale

cwd stands for “current working directory” The result in thixaenple is
/home/dinsdale , which is the home directory of a user nantéitbdale

A string like cwd that identifies a file is called path. A relative path starts from the
current directory; amabsolute pathstarts from the topmost directory in the file system.

The paths we have seen so far are simple filenames, so theglatiee to the current
directory. To find the absolute path to a file, you can alsspath , which is in the
moduleos.path

>>> 0s.path.abspath(' memo.txt ')
" Ihome/dinsdale/memo.txt '

0s.path.exists checks whether the file (or directory) specified by a pathtgxis

>>> 0s.path.exists(" memo.txt ")

True

If it exists, os.path.isdir checks whether it’s a directory:
>>> 0s.path.isdir(" memo.txt ')

False

>>> 0s.path.isdir(' music ')

True

Similarly, os.path.isfile checks whether it’s a file.

os.listdir returns a list of the files (and other directories) in the gideectory:

>>> os.listdir(cwd)
[music', ' photos

, ' memo.txt ']

To demonstrate these functions, the following example Kelathrough a directory,
prints the names of all the files, and calls itself recurgive all the directories.

def walk(dir):
for name in os.listdir(dir):
path = os.path.join(dir, name)

11.5. Catching exceptions 107

if os.path.isfile(path):
print(path)

else:
walk(path)

os.path.join takes a directory and a file name and joins them into a compégte
Exercise 11.1.Modifywalk so that instead of printing the names of the files, it returns
a list of names.

11.5 Catching exceptions

A lot of things can go wrong when you try to read and write filésiou try to open a
file that doesn't exist, you get dOError :

>>> fin = open(' bad_file ")
IOError: [Erro 2] No such file or directory: ' bad_file

If you don't have permission to access a file:

>>> fout = open(' /etclpasswd ', 'Ww)
IOError: [Errno 13] Permission denied: ' Jetc/passwd

And if you try to open a directory for reading, you get

>>> fin = open(' /home")
IOError: [Errno 21] Is a directory

To avoid these errors, you could use functions like.path.exists and
os.path.isfile , but it would take a lot of time and code to check all the pdbksib
ities (based on the last error message, theradesast21 things that can go wrong).

Itis better to go ahead and try, and deal with problems if thegypen, which is exactly
what thetry statement does. The syntax is similar tafarstatement:

try:
fin = open(' bad_file ')
for line in fin:
print(line)
fin.close()
except:
print(' Something went wrong. ')

Python starts by executing tirg clause. If all goes well, it skips thexcept clause
and proceeds. If an exception occurs, it jumps out ofttheclause and executes the
except clause.

Handling an exception with sty statement is calledatching an exception. In this
example, thexcept clause prints an error message that is not very helpful. he g,

108 Chapter 11. Files

catching an exception gives you a chance to fix the problenryagain, or at least
end the program gracefully.

11.6 Pickling

If you want to store the state of a program, and not just striioga file, thepickle
module can help. It translates almost any type of object én&iring, suitable for
storage in a database, and then translates strings baakijetcts.

pickle.dumps takes an object as a parameter and returns a string repaeant
(dumps is short for “dump string”):

>>> import pickle

>>> t = [1, 2, 3

>>> pickle.dumps(t)

b' \x80\x03]q\x00(K\x01K\x02K\x03e. '

The format isn’t obvious to human readers; it is meant to tsy &ar pickle to inter-
pret. pickle.loads (“load string”) reconstitutes the object:

>>> tl = [1, 2, 3]

>>> s = pickle.dumps(tl)
>>> t2 = pickle.loads(s)
>>> print(t2)

[1, 2, 3]

Although the new object has the same value as the old, it isimgeneral) the same
object:;

>>> t == 12
True
>>> tis t2
False

In other words, pickling and then unpickling has the sameatfis copying the object.

You can usepickle to store non-strings in a database. In fact, this combinasso
common that it has been encapsulated in a module cstibdek .

11.7 Glossary

persistent: Pertaining to a program that runs indefinitely and keepsastlsome of
its data in permanent storage.

format operator: An operator% that takes a format string and a tuple and generates a
string that includes the elements of the tuple formattegasified by the format
string.

11.7. Glossary 109

format string: A string, used with the format operator, that contains fdree:
guences.

format sequence: A sequence of characters in a format string, Wsethat specifies
how a value should be formatted.

text file: A sequence of characters stored in non-volatile storagedlikard drive.
directory: A named collection of files, also called a folder.

path: A string that identifies a file.

relative path: A path that starts from the current directory.

absolute path: A path that starts from the topmost directory in the file syste

catch: To prevent an exception from terminating a program usingrtheandexcept
statements.

110 Chapter 11. Files

Chapter 12

Dictionaries

A dictionary is like a list, but more general. In a list, the indices havéedntegers;
in a dictionary they can be (almost) any type.

You can think of a dictionary as a mapping between a set ofesiand a set of values.
Each index, which is calledleey, corresponds to a value. The association of a key and
a value is called &ey-value pair or sometimes aitem.

As an example, we will build a dictionary that maps from Eslglivords to Spanish
words, so the keys and the values are all strings.

The functiondict creates a new dictionary with no items.

>>> eng2sp = dict()
>>> print(eng2sp)
{

The squiggly-bracketd} , represent an empty dictionary. To add items to the dictio-
nary, you can use square brackets:

>>> eng2sp['one'] = ' uno'
This line creates an item that maps from the loag’ to the valuéuno’ . If we print
the dictionary again, we see a key-value pair with a colowéeh the key and value:

>>> print(eng2sp)
{"one': "uno'}

This output format is also an input format. For example, yan create a new dictio-
nary with three items:

>>> eng2sp = { 'one': 'uno', 'two': 'dos', 'three ': 'tres '}

112 Chapter 12. Dictionaries

But if you printeng2sp , you might be surprised:

>>> print(eng2sp)
{"one': "uno', 'three

"tres ', '"two': 'dos'}

The key-value pairs are not in order, but that’s not a proldecause the elements of a
dictionary are never indexed with integer indices. Instgad use the keys to look up
the corresponding values:

>>> print(eng2sp] ' two '])
' dos'

The keytwo' always maps to the valugos’ so the order of the items doesn’t matter.
If the key isn't in the dictionary, you get an exception:

>>> print(eng2sp[' four ')
KeyError: ' four '

Thelen function works on dictionaries; it returns the number of kejyue pairs:

>>> |en(eng2sp)
3

Thein operator works on dictionaries; it tells you whether sorimgtlappears asley
in the dictionary (appearing as a value is not good enough).

>>> ' one' in eng2sp
True
>>> ' uno
False

in eng2sp

To see whether something appears as a value in a dictiormngan use the method
values , and then use the operator:

>>> vals = eng2sp.values()
>>> 'uno' in vals
True

Thein operator uses different algorithms for lists and dictioesr For lists, it uses a
search algorithm, as in Section 9.3. As the list gets lortgersearch time gets longer
in direct proportion. For dictionaries, Python uses an itlgm called shashtablethat

has a remarkable property: tire operator takes about the same amount of time no
matter how many items there are in a dictionary. |1 won't expleow that’s possible,
but you can look it up.

12.1 Dictionary as a set of counters

Suppose you are given a string and you want to count how mamgstieach letter
appears. There are several ways you could do it:

12.1. Dictionary as a set of counters 113

1. You could create 26 variables, one for each letter of thieeddet. Then you could
traverse the string and, for each character, incrementatresponding counter,
probably using a chained conditional.

2. You could create a list with 26 elements. Then you couldredreach character
to a number (using the built-in functiamd), use the number as an index into
the list, and increment the appropriate counter.

3. You could create a dictionary with characters as keys andters as the corre-
sponding values. The first time you see a character, you waddidan item to
the dictionary. After that you would increment the value nfexisting item.

Each of these options performs the same computation, bbtaahem implements
that computation in a different way.

An implementation is a way of performing a computation; some implementatioas a
better than others. For example, an advantage of the dégtiamplementation is that
we don't have to know ahead of time which letters appear instiag and we only
have to make room for the letters that do appear.

Here is what the code might look like:

def histogram(s):
d={
for ¢ in s:
if ¢ not in d:
dc] =1
else:
dic] += 1
return d

The name of the function isistogram, which is a statistical term for a set of counters
(or frequencies).

The first line of the function creates an empty dictionaryeTtn loop traverses the
string. Each time through the loop, if the charactés not in the dictionary, we create
a new item with key and the initial value 1 (since we have seen this letter orite).
is already in the dictionary we incremetjt] .

Here’s how it works:

>>> h = histogram(' brontosaurus ')

>>> print(h)

{ra':1, 'b':1, '0:2 'n:1 ‘'s':2 ‘'r':2 ‘'u:2 ‘'t':1}

The histogram indicates that the lettéa's and’h’ appear once eacly’ appears
twice, and so on.

114 Chapter 12. Dictionaries

Exercise 12.1.Dictionaries have a method callegt that takes a key and a default
value. If the key appears in the dictionaggt returns the corresponding value; other-
wise it returns the default value. For example:

>>> h = histogram(
>>> print(h)

a')

{ra': 1}

>>> hget('a', 0)
1

>>> hget('b', 0)
0

Useget to write histogram more concisely. You should be able to eliminateithe
statement.

12.2 Looping and dictionaries

If you use a dictionary in éor statement, it traverses the keys of the dictionary. For
exampleprint _hist prints each key and the corresponding value:

def print_hist(h):
for ¢ in h
print(c, h[c])

Here’s what the output looks like:

>>> h = histogram(' parrot ')
>>> print_hist(h)

al

p1l
r2
t1
01l
Again, the keys are in no particular order.

Exercise 12.2.Dictionaries have a method calldays that returns the keys of the
dictionary, in no particular order, as a list.

Modifyprint _hist to print the keys and their values in alphabetical ordernggieys
andsort .

12.3 Reverse lookup

Given a dictionand and a ke, it is easy to find the corresponding value= dfk] .
This operation is called @okup.

12.3. Reverse lookup 115

But what if you havev and you want to fink? You have two problems: first, there
might be more than one key that maps to the valu®epending on the application,
you might be able to pick one, or you might have to make a liat tontains all of
them. Second, there is no simple syntax to deveerse lookup you have to search.

Here is a function that takes a value and returns the firsthaynaps to that value:

def reverse_lookup(d, v):
for k in d:
if dk] == v:
return k
raise ValueError

This function is yet another example of the search pattermawe seen before, but
it uses a feature we haven't seen befoase . Theraise statement causes an ex-
ception; in this case it causesvalueError , which generally indicates that there is
something wrong with the value of a parameter.

If we get to the end of the loop, that meandoesn’t appear in the dictionary as a value,
SO We raise an exception.

Here is an example of a successful reverse lookup:

>>> h = histogram(' parrot ')
>>> k = reverse_lookup(h, 2)
>>> print(k)

r

And an unsuccessful one:

>>> k = reverse_lookup(h, 3)
Traceback (most recent call last):

File "<stdin>", line 1, in ?

File "<stdin>", line 5, in reverse_lookup
ValueError

The result when you raise an exception is the same as whearPsglses one: it prints
a traceback and an error message.

Theraise statement takes a detailed error message as an optionahemyu For
example:

>>> raise ValueError, ' value does not appear in the dictionary
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: value does not appear in the dictionary

A reverse lookup is much slower than a forward lookup; if yawédnto do it often, or
if the dictionary gets big, the performance of your prograith suffer.

Exercise 12.3.Modify reverse _lookup so that it builds and returns a list @il keys
that map tov, or an empty list if there are none.

116 Chapter 12. Dictionaries

12.4 Dictionaries and lists

Lists can appear as values in a dictionary. For example Lfwere given a dictionary
that maps from letters to frequencies, you might want torinite that is, create a
dictionary that maps from frequencies to letters. Sinceetimeight be several letters
with the same frequency, each value in the inverted dictipglaould be a list of letters.

Here is a function that inverts a dictionary:

def invert_dict(d):

inv = {}
for key in d:
val = dlkey]

if val not in inv:
invjval] = [key]
else:
inv[val].append(key)
return inv

Each time through the loofkey gets a key frond andval gets the corresponding
value. Ifval is notininv , that means we haven't seen it before, so we create a new
item and initialize it with asingleton (a list that contains a single element). Otherwise
we have seen this value before, so we append the corresgdradino the list.

Here is an example:

>>> hist = histogram(' parrot ')

>>> print(hist)

{ra*:1, 'p':1 ‘'r':2 ‘'"t':1, ‘'0o:1}
>>> jnv = invert_dict(hist)

>>> print(inv)

. ["a, "p', "ty o' L2 r']}

And here is a diagram showirgst andinv :

dict dict list
hist—= a — 1 inv —= 1 0—=a
0’ 1 1 0’
- 5 > "
= 1 3 =g

o 1

list

2 0——="77r

12.5. Debugging 117

A dictionary is represented as a box with the tgme above it and the key-value pairs
inside. If the values are integers, floats or strings, | ugubw them inside the box,
but | usually draw lists outside the box, just to keep the diagsimple.

Lists can be values in a dictionary, as this example showsthay cannot be keys.
Here’s what happens if you try:

>>>t = [1, 2, 3]
>>> d = {}
>>> d[t] = ' oops'

Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypekError: list objects are unhashable

I mentioned earlier that a dictionary is implemented usirtashtable and that means
that the keys have to beashable

A hashis a function that takes a value (of any kind) and returns tager. Dictionaries
uses these integers, called hash values, to store and |dakyey@lue pairs.

This system works fine if the keys are immutable. But if thesase mutable, like lists,
bad things happen. For example, when you create a key-valyePython hashes the
key and stores it in the corresponding location. If you mpdlife key and then hash
it again, it would go to a different location. In that case yaight have two entries
for the same key, or you might not be able to find a key. Eithey, Wee dictionary
wouldn’t work correctly.

That's why the keys have to be hashable, and why mutable tigmebksts aren’t. The
simplest way to get around this limitation is to use tuples.

Since dictionaries are mutable, they can’t be used as keyshby can be used as
values.

Exercise 12.4.Read the documentation of the dictionary metbeidefault and use
it to write a more concise version ofvert _dict .

12.5 Debugging

As you work with bigger datasets it can become unwieldy toudely printing and
checking data by hand. Here are some suggestions for defyiggge datasets:

Scale down the input: If possible, reduce the size of the dataset. For exampleif th
program reads a text file, start with just the first 10 lineswith the smallest
example you can find. You can either edit the files themsebregetter) modify
the program so it reads only the firstines.

If there is an error, you can reducéo the smallest value that manifests the error,
and then increase it gradually as you find and correct errors.

118 Chapter 12. Dictionaries

Check summaries and types:Instead of printing and checking the entire dataset,
consider printing summaries of the data: for example, thabar of items in
a dictionary or the total of a list of numbers.

A common cause of run-time errors is a value that is not thiet igpe. For
debugging this kind of error, it is often enough to print thee of a value, which
is often smaller than the value itself.

Write self-checks: Sometimes you can write code to check for errors autométical
For example, if you are computing the average of a list of nemjpou could
check that the result is not greater than the largest eleméim¢ list or less than
the smallest. This is called a “sanity check” because italsteesults that are
“insane.”

Another kind of check compares the results of two differemhputations to see
if they are consistent. This is called a “consistency cHeck.

12.6 Glossary

dictionary: A mapping from a set of keys to their corresponding values.
key-value pair: The representation of the mapping from a key to a value.
item: Another name for a key-value pair.

key: An object that appears in a dictionary as the first part of auaye pair.

value: An object that appears in a dictionary as the second part efyavéllue pair.
This is more specific than our previous use of the word “vélue.

implementation: A way of performing a computation.
hashtable: The algorithm used to implement Python dictionaries.
hash function: A function used by a hashtable to compute the location forya ke

hashable: A type that has a hash function. Immutable types like integioats and
strings are hashable; mutable types like lists and dictiesare not.

lookup: A dictionary operation that takes a key and finds the cormeding value.

reverse lookup: A dictionary operation that takes a value and finds one or rkeys
that map to it.

singleton: A list (or other sequence) with a single element.

call graph: A diagram that shows every frame created during the exatufi@a pro-
gram, with an arrow from each caller to each callee.

histogram: A set of counters.

12.7. Exercises 119

hint: A computed value stored to avoid unnecessary future cortipata

global variable: A variable defined outside a function. Global variables carab-
cessed from any function.

12.7 Exercises

Exercise 12.5.Two words are anagrams if you can rearrange the letters from o
spell the other. Write a function callesl _anagram that takes two strings and returns
True if they are anagrams.

Exercise 12.6.Write a function nametlas _duplicates that takes a list as a param-
eter and that return3rue if there is any object that appears more than once in the list,
andFalse otherwise.

120 Chapter 12. Dictionaries

Part Il

Object-Oriented Programming

Chapter 13

Classes and objects

13.1 User-defined types

We have used many of Python’s built-in types; now we are geindefine a new
type. As an example, we will create a type callRaint that represents a point in
two-dimensional space.

In mathematical notation, points are often written in p#teses with a comma sepa-
rating the coordinates. For examp(®,0) represents the origin, ar{d,y) represents
the pointx units to the right ang units up from the origin.

There are several ways we might represent points in Python:

* We could store the coordinates separately in two variaklasdy.
* We could store the coordinates as elements in a list or tuple

* We could create a new type to represent points as objects.

Creating a new type is (a little) more complicated than theeobptions, but it has
advantages that will be apparent soon.

A user-defined type is also callectkass A class definition looks like this:

class Point;
""represents a point in 2-D space

i

This header indicates that the new class is caéfi@dt . The body is a docstring that
explains what the class is for. You can define variables andtions inside a class
definition, but we will get back to that later.

Defining a class nameRbint creates a class object, also narReaht .

124 Chapter 13. Classes and objects

>>> print(Point)

<class __main__.Point>
>>> type(Point)

<class ' type ' >

BecauseéPoint is defined at the top level, its “full name” ismain __.Point

The class object is like a factory for creating objects. Tate a Point, you cafoint
as if it were a function.

>>> blank = Poaint()
>>> print(blank)
<__main__.Point instance at Oxb7e9d3ac>

The return value is a reference to a Point object, which wigagsblank . Creating a
new object is calleéhstantiation, and the object is aimstanceof the class.

13.2 Attributes

You can assign values to an instance using dot notation:

>>> blank.x = 3.0
>>> blanky = 4.0

This syntax is similar to the syntax for selecting a variditen a module, such as
math.pi or string.uppercase . In this case, though, we are assigning values to
named elements of an object. These elements are cthialtes.

As a noun, “AT-trib-ute” is pronounced with emphasis on thstfsyllable, as opposed
to “a-TRIB-ute,” which is a verb.

The following diagram shows the result of these assignmeAtstate diagram that
shows an object and its attributes is callecbaject diagram:

Point

blank —={ x —= 3.0

y —= 4.0

The variableblank refers to a Point object, which contains two attributes. hEaie
tribute refers to a floating-point number.

We can read the value of an attribute using the same syntax:

>>> print(blank.y)
4.0

>>> x = blank.x
>>> print(x)

3.0

13.3. Rectangles 125

The expressiomlank.x means, “Go to the objediank refers to and get the value
of x.” In this case, we assign that value to a variable namedhere is no conflict
between the variabbe and the attribute.

You can use dot notation as part of any expression. For exampl

>>> print(' (%g, %g) "' % (blank.x, blank.y))
(3.0, 4.0)

>>> distance = math.sgrt(blank.x**2 + blank.y**2)
>>> print(distance)

5.0

You can pass an instance as an argument in the usual way. &opéx

def print_point(p):
print(' (%g, %g) " % (px, p.y))

print _point takes a point as an argument and displays it in mathematitaion. To
invoke it, you can padslank as an argument:

>>> print_point(blank)
(3.0, 4.0)

Inside the functionp is an alias forblank , so if the function modifieg, blank
changes.

Exercise 13.1.Write a function calledlistance that it takes two Points as arguments
and returns the distance between them.

13.3 Rectangles

Sometimes it is obvious what the attributes of an object khioe, but other times you
have to make decisions. For example, imagine you are degignclass to represent
rectangles. What attributes would you use to specify thetilmeand size of a rectan-
gle? You can ignore angle; to keep things simple, assumeltbaectangle is either
vertical or horizontal.

There are at least two possibilities:

 You could specify one corner of the rectangle (or the centiee width, and the
height.

* You could specify two opposing corners.

At this point it is hard to say whether either is better thaadther, so we’ll implement
the first one, just as an example.

Here is the class definition:

126 Chapter 13. Classes and objects

class Rectangle:
""represent a rectangle.
attributes: width, height, corner.

The docstring lists the attribute namesdth andheight are numbersgorner is a
Point object that specifies the lower-left corner.

To represent a rectangle, you have to instantiate a Reetahjtct and assign values
to the attributes:

box = Rectangle()
box.width = 100.0
box.height = 200.0
box.corner = Point()
box.cornerx = 0.0
box.corner.y = 0.0

The expressiomox.corner.x ~ means, “Go to the objedix refers to and select the
attribute namedorner ; then go to that object and select the attribute naried

The figure shows the state of this object:

Rectangle

box —=| width —= 100.0 Point
height —= 200.0 . ~ 0.0
corner y —= 0.0

13.4 Instances as return values

Functions can return instances. For examfile, _center takes aRectangle as
an argument and returnsPaint that contains the coordinates of the center of the
Rectangle

def find_center(box):
p = Point()
p.x = box.corner.x + box.width/2.0
p.y = box.cornery + box.height/2.0
return p

Here is an example that pasgesx as an argument and assign the resulting Point to
center :

>>> center = find_center(box)
>>> print_point(center)
(50.0, 100.0)

13.5. Objects are mutable 127

13.5 Objects are mutable

We can change the state of an object by making an assignmengtof its attributes.
For example, to change the size of a rectangle without charitg position, you can
modify the values oWidth andheight :

box.width = box.width + 50
box.height = box.width + 100

You can also write functions that modify objects. For exapgbw _rectangle takes
a Rectangle object and two numbetwjdth anddheight , and adds the numbers to
the width and height of the rectangle:

def grow_rectangle(rect, dwidth, dheight) :
rect.width += dwidth
rect.height += dheight

Here is an example that demonstrates the effect:

>>> print(box.width)

100.0

>>> print(box.height)

200.0

>>> grow_rectangle(box, 50, 100)
>>> print(box.width)

150.0

>>> print(box.height)

300.0

Inside the functionyect is an alias forox, so if the function modifiesect , box
changes.

Exercise 13.2. Write a function namecdhove_rectangle that takes a Rectangle and
two numbers nameatk anddy. It should change the location of the rectangle by adding
dx to thex coordinate oftorner and addingdy to they coordinate oftorner .

13.6 Copying

Aliasing can make a program difficult to read because chamgeke in one place might
have unexpected effects in another place. It is hard to keej bf all the variables
that might refer to a given object.

Copying an object is often an alternative to aliasing. Thgy module contains a
function calledcopy that can duplicate any object:

>>> pl = Point()
>>> plx = 3.0
>>> ply = 4.0

128 Chapter 13. Classes and objects

>>> import copy
>>> p2 = copy.copy(pl)

pl andp2 contain the same data, but they are not the same Point.

>>> print_point(pl)
(3.0, 4.0

>>> print_point(p2)
(3.0, 4.0)

>>> pl is p2
False

>>> pl == p2
False

Theis operator indicates thatl andp2 are not the same object, which is what we
expected. But you might have expectedto yield True because these points contain
the same data. In that case, you will be disappointed to léeinfor instances, the
default behavior of the= operator is the same as tfse operator; it checks object
identity, not object equivalence.

This behavior can be changed, so for many objects definedtioRynodules, the=
operator checks equivalence (in whatever sense is apptepriBut the default is to
check identity.

If you usecopy.copy to duplicate a Rectangle, you will find that it copies the Raet
gle object but not the embedded Point.

>>> hox2 = copy.copy(box)
>>> hox2 is box

False

>>> hox2.corner is box.corner
True

Here is what the object diagram looks like:

box——= width —= 100.0 100.0 =— width <=—box2
height —= 200.0 . ~ 00 200.0 =— height
corner y ~ 00 corner

This operation is called shallow copybecause it copies the object and any references
it contains, but not the embedded objects.

For most applications, this is not what you want. In this egbam invoking
grow _rectangle on one of the Rectangles would not affect the other, but imgk

13.7. Debugging 129

move_rectangle on either would affect both! This behavior is confusing anaie
prone.

Fortunately, theopy module contains a method nanesgpcopy that copies not only
the object but also the objects it refers to, and the objbetgrefer to, and so on. You
will not be surprised to learn that this operation is callatkap copy

>>> hox3 = copy.deepcopy(box)
>>> hox3 is hox

False

>>> hox3.corner is box.corner
False

box3 andbox are completely separate objects.
Exercise 13.3.Write a versionmove_rectangle that it creates and returns a new
Rectangle instead of modifying the old one.

13.7 Debugging

When you start working with objects, you are likely to encausiome new exceptions.
If you try to access an attribute that doesn’t exist, you geitaibuteError

>>> p = Point(3, 4)
>>> print(p.z)
AttributeError: Point instance has no attribute

If you are not sure what class an object is, you can ask:

>>> type(p)
<class ' instance ' >

This result tells us that is an object, but not what kind. But all objects have a special
attribute named_class __that refers to the object’s particular class name.

>>> print(p.__class_)
__main__.Point

If you are not sure whether an object has a particular at&jtyou can use the built-in
functionhasattr

>>> hasattr(p, "x')
True
>>> hasattr(p, 'z")
False

The first argument can be any object; the second argumerstigg that contains the
name of the attribute.

130 Chapter 13. Classes and objects

Another way to access the attributes of an object is throdnghspecial attribute
_dict __, which is a dictionary that maps from attribute names (asggj and val-
ues:

>>> print(p.__dict_)
{*y' 14 'x:3}

For purposes of debugging, you might find it useful to keeg filnnction handy:

def print_attributes(obj):
for attr in obj.__dict_ :
print(attr, getattr(obj, attr))

print _attributes traverses the items in the object’s dictionary print eadtbate
name and its corresponding value.

The built-in functiongetattr ~ takes an object and an attribute name (as a string) and
returns the attribute’s value.

13.8 Glossary
class: A user-defined type. A class definition creates a new clagsctbj

class object: An object that contains information about a user-define@tifhe class
object can be used to create instances of the type.

instance: An object that belongs to a class.
attribute: One of the named values associated with an object.

shallow copy: To copy the contents of an object, including any referencestbed-
ded objects; implemented by thepy function in thecopy module.

deep copy: To copy the contents of an object as well as any embeddedtebged any
objects embedded in them, and so on; implemented bgettpeopy function in
thecopy module.

object diagram: A diagram that shows objects, their attributes, and theegabf the
attributes.

13.9 Exercises

Chapter 14

Classes and functions

14.1 Time

As another example of a user-defined type, we'll define a daksdTime that records
the time of day. The class definition looks like this:

class Time:
""represents the time of day
attributes: hour, minute, second

i

We can create a neWime object and assign attributes for hours, minutes, and sascond

time = Time()
time.hour = 11
time.minute = 59
time.second = 30

The state diagram for thBme object looks like this:

Time

time —= hour — 11
minute —= 59

second —= 30

Exercise 14.1.Write a functionprint _time that takes a Time object and prints it in
the formhour:minute:second

Exercise 14.2.Write a boolean functioafter that takes two Time objectd, and
t2 , and returnslrue if t1 followst2 chronologically andralse otherwise.

132 Chapter 14. Classes and functions

14.2 Pure functions

In the next few sections, we'll write two versions of a fulcticalledadd _time , which
calculates the sum of two Time objects. They demonstrat&kimas of functions: pure
functions and modifiers. They also demonstrate a developptam I'll call prototype
and patch, which is a way of tackling a complex problem by starting wétlsimple
prototype and incrementally dealing with the complicasgion

Here is a simple prototype afld _time :

def add_time(t1, t2):
sum = Time()
sum.hour = tl.hour + t2.hour
sum.minute = tl.minute + t2.minute
sum.second = tl.second + t2.second
return sum

The function creates a neélime object, initializes its attributes, and returns a refeeenc
to the new object. This is calledpaure function because it does not modify any of the
objects passed to it as arguments and it has no side effactsas displaying a value
or getting user input.

To test this function, I'll create two Time objectstart contains the start time of a
movie, like Monty Python and the Holy Graiandduration contains the run time of
the movie, which is one hour 35 minutes.

add _time figures out when the movie will be done.

>>> start = Time()
>>> start.hour = 9
>>> start.minute = 45
>>> start.second = 0

>>> duration = Time()
>>> duration.hour = 1
>>> duration.minute = 35
>>> duration.second = 0

>>> done = add_time(start, duration)
>>> print_time(done)
10:80:00

The result10:80:00 might not be what you were hoping for. The problem is that this
function does not deal with cases where the number of secomdsnutes adds up
to more than sixty. When that happens, we have to “carry” theeseconds into the
minute column or the extra minutes into the hour column.

Here’s an improved version:

14.3. Modifiers 133

def add_time(t1, t2):
sum = Time()
sum.hour = tl.hour + t2.hour
sum.minute = tl.minute + t2.minute
sum.second = tl.second + t2.second

if sum.second >= 60:
sum.second -= 60
sum.minute += 1

if sum.minute >= 60:
sum.minute -= 60
sum.hour += 1

return sum

Although this function is correct, it is starting to get biye will see a shorter alterna-
tive later.

14.3 Modifiers

Sometimes it is useful for a function to modify the objectgéts as parameters. In
that case, the changes are visible to the caller. Functi@isitork this way are called
modifiers.

increment , which adds a given number of seconds tbirae object, can be written
naturally as a modifier. Here is a rough draft:

def increment(time, seconds):
time.second += seconds

if time.second >= 60:
time.second -= 60
time.minute += 1

if time.minute >= 60:
time.minute -= 60
time.hour += 1

The first line performs the basic operation; the remaindatsdeith the special cases
we saw before.

Is this function correct? What happens if the paramstesnds is much greater than
sixty? In that case, it is not enough to carry once; we haveeplkdoing it until

time.second is less than sixty. One solution is to replace thestatements with
while statements. That would make the function correct, but nigt eficient.

134 Chapter 14. Classes and functions

Exercise 14.3.Write a correct version aficrement that doesn’t contain any loops.

Anything that can be done with modifiers can also be done witfe ffunctions. In
fact, some programming languages only allow pure functidhgre is some evidence
that programs that use pure functions are faster to develddess error-prone than
programs that use modifiers. But modifiers are convenientrast and functional
programs tend to be less efficient.

In general, | recommend that you write pure functions whenévis reasonable and
resort to modifiers only if there is a compelling advantagbisTapproach might be
called afunctional programming style.

Exercise 14.4.Write a “pure” version ofincrement that creates and returns a new
Time object rather than modifying the parameter.

14.4 Prototyping versus planning

In this chapter, | demonstrated development plan calleattjpype and patch.” For each
function, | wrote a rough draft that performed the basic aaliton and then tested it,
correcting flaws along the way.

This approach can be effective, especially if you don't yateha deep understand-
ing of the problem. But incremental patching can generatie ¢bat is unnecessarily
complicated—since it deals with many special cases—andiahlel—since it is hard
to know if you have found all the errors.

An alternative isplanned developmentin which high-level insight into the problem
can make the programming much easier. In this case, thehirisithat a Time object
is really a three-digit number in base 60! Téazond attribute is the “ones column,”
the minute attribute is the “sixties column,” and theur attribute is the “thirty-six

hundreds column.”

When we wroteadd _time andincrement , we were effectively doing addition in base
60, which is why we had to carry from one column to the next.

This observation suggests another approach to the whol#gme—we can convert
Time objects to integers and take advantage of the facthikatdmputer knows how to
do integer arithmetic.

Here is the function that converts Times to integers:

def time_to_int(time):
minutes = time.hour * 60 + time.minute
seconds = minutes * 60 + time.second
return seconds

And here is the function that converts integers to Timesa{felcatdivmod divides the
first argument by the second and returns the quotient andmederaas a tuple).

14.5. Glossary 135

def int_to_time(seconds):
time = Time()
minutes, time.second = divmod(seconds, 60)
time.hour, time.minute = divmod(minutes, 60)
return time

You might have to think a bit, and run some tests, to convirmeself that these func-
tions are correct. But once they are debugged, you can usettheewriteadd _time :

def add_time(t1, t2):
seconds = time_to_int(t1) + time_to_int(t2)
return int_to_time(seconds)

This version is shorter than the original, and easier tdyeri
Exercise 14.5.Rewriteincrement usingtime _to _int andint _to _time .

In some ways, converting from base 60 to base 10 and backdstdan just dealing
with times. Base conversion is more abstract; our intuifmmdealing with times is
better.

But if we have the insight to treat times as base 60 numbersake the investment of
writing the conversion functiongitfe _to _int andint _to _time), we get a program
that is shorter, easier to read and debug, and more reliable.

It is also easier to add features later. For example, imagjhéracting two Times to
find the duration between them. Théwaapproach would be to implement subtraction
with borrowing. Using the conversion functions would beieaand more likely to be
correct.

Ironically, sometimes making a problem harder (or more gghenakes it easier (be-
cause there are fewer special cases and fewer opportuoitiesor).

14.5 Glossary

prototype and patch: A development plan that involves writing a rough draft of a
program, testing, and correcting errors as they are found.

planned development: A development plan that involves high-level insight inte th
problem and more planning than incremental developmentaiotype devel-
opment.

pure function: A function that does not modify any of the objects it receisssrgu-
ments. Most pure functions are fruitful.

modifier: A function that changes one or more of the objects it receigesrguments.
Most modifiers are fruitless.

functional programming style: A style of program design in which the majority of
functions are pure.

136 Chapter 14. Classes and functions

14.6 Exercises

Exercise 14.6.Write a function calledhul _time that takes a Time object and a number
and returns a new Time object that contains the product obtiiginal Time and the
number.

Then usemul _time to write a function that takes a Time object that represehts t
finishing time in a race, and a number that represents thexdist, and returns a Time
object that represents the average pace (time per mile).

Chapter 15

Classes and methods

15.1 Object-oriented features

Python is arobject-oriented programming language which means that it provides
features that support object-oriented programming.

Itis not easy to define object-oriented programming, but axetalready seen some of
its characteristics:

« Programs are made up of object definitions and function itiefis, and most of
the computation is expressed in terms of operations on tsbjec

e Each object definition corresponds to some object or cdringpe real world,
and the functions that operate on that object corresponietovays real-world
objects interact.

For example, th&ime class defined in Chapter 14 corresponds to the way peopledreco
the time of day, and the functions we defined correspond t&ittds of things people
do with times. Similarly, thé’oint andRectangle classes correspond to the mathe-
matical concepts of a point and a rectangle.

So far, we have not taken advantage of the features Pytherdpsoto support object-
oriented programming. Strictly speaking, these featuregsat necessary. For the most
part, they provide an alternative syntax for things we hdkeady done, but in many
cases, the alternative is more concise and more accuratelgys the structure of the
program.

For example, in th&ime program, there is no obvious connection between the class
definition and the function definitions that follow. With seraxamination, it is appar-
ent that every function takes at least diitee object as an argument.

138 Chapter 15. Classes and methods

This observation is the motivation fonethods a method is a function that is asso-
ciated with a particular class. For example, we have seehadstfor strings, lists,
dictionaries and tuples. In this chapter, we will define rodghfor user-defined types.

Methods are semantically the same as functions, but thettevarsyntactic differences:

» Methods are defined inside a class definition in order to ntl&eelationship
between the class and the method explicit.

» The syntax for invoking a method is different from the syiar calling a func-
tion.

In the next few sections, we will take the functions from thevious two chapters and
transform them into methods. This transformation is punegchanical; you can do it
simply by following a sequence of steps. If you are comfdeaimnverting from one
form to another, you will be able to choose the best form foatetier you are doing.

15.2 print _time

In Chapter 14, we defined a class narnieoe and in Exercise 14.1, you wrote a func-
tion namedprint _time :

class Time:
""'represents the time of day
attributes: hour, minute, second™"
def print_time(time):
print(' %.2d:%.2d:%.2d ' % (time.hour, time.minute, time.second))

To call this function, you have to pasde object as an argument;

>>> start = Time()
>>> start.hour = 9
>>> start.minute = 45
>>> start.second = 00
>>> print_time(start)
09:45:00

To makeprint _time a method, all we have to do is move the function definitiondasi
the class definition. Notice the change in indentation.

class Time:
def print_time(time):
print(' %.2d:%.2d:%.2d ' % (time.hour, time.minute, time.second))

Now there are two ways to caltint _time . The first (and less common) way is to use
function syntax:

15.3. Another example 139

>>> Time.print_time(start)
09:45:00

In this use of dot notatiorfjime is the name of the class, apdnt _time is the name
of the methodstart is passed as a parameter.

The second (and more concise) way is to use method syntax:

>>> start.print_time()
09:45:00

In this use of dot notatiorprint _time is the name of the method (again), astatt

is the object the method is invoked on, which is calledghbject Just as the subject
of a sentence is what the sentence is about, the subject afr@dni@vocation is what
the method is about.

Inside the method, the subject is assigned to the first pdesns® in this casstart
is assigned t¢éime .

By convention, the first parameter of a method is caflelfl , so it would be more
common to writeprint _time like this:

class Time:
def print_time(self):
print(' %.2d:%.2d:%.2d ' % (self.hour, self.minute, self.second))

The reason for this convention is convoluted, but it is based useful metaphor:

The syntax for a function calprint _time(start) , suggests that the function is the
active agent. It says something like, “Hpgnt _time ! Here’s an object for you to
print.”

In object-oriented programming, the objects are the aetijy@nts. A method invocation
like start.print _time() says “Heystart ! Please print yourself.”

This change in perspective might be more polite, but it isoheious that it is useful. In
the examples we have seen so far, it may not be. But somethféagresponsibility
from the functions onto the objects makes it possible toearibre versatile functions,
and makes it easier to maintain and reuse code.

Exercise 15.1.Rewritetime _to _int (from Section 14.4) as a method. It is probably
not appropriate to rewritént _to _time as a method; it's not clear what object you
would invoke it on!

15.3 Another example

Here’s a version oifcrement (from Section 14.3) rewritten as a method:

140 Chapter 15. Classes and methods

inside class Time:

def increment(self, seconds):
seconds += self.time_to_int()
return int_to_time(seconds)

This version assumes thtithe _to _int is written as a method, as in Exercise 15.1.
Also, note that it is a pure function, not a modifier.

Here’s how you would invokécrement

>>> start.print_time()

09:45:00

>>> end = start.increment(1337)
>>> end.print_time()

10:07:17

The subjectstart , gets assigned to the first parametetf . The argument]337,
gets assigned to the second paramsgennds .

This mechanism can be confusing, especially if you make ram.éfor example, if you
invokeincrement with two arguments, you get:

>>> end = start.increment(1337, 460)
TypeError: increment() takes exactly 2 arguments (3 given)

The error message is initially confusing, because thererdygwo arguments in paren-
theses. But the subject is also considered an argument,tsgether that’s three.

15.4 A more complicated example

after (from Exercise 14.2) is slightly more complicated becaugakes two Time
objects as parameters. In this case it is conventional terthmfirst parameteself
and the second parametginer :

inside class Time:

def after(self, other):
return self.time_to_int() > other.time_to_int()

To use this method, you have to invoke it on one object and thassther as an argu-
ment:

>>> end.after(start)
True

One nice thing about this syntax is that it has the same water@s English, subject-
verb-object.

15.5. Theinit method 141

15.5 Theinit method

Theinit method (short for “initialization”) is a special method tlgets invoked when
an object is instantiated. Its full name_igit __ (two underscore characters, followed
by init , and then two more underscores). An init method forTinge class might
look like this:

inside class Time:

def __init_ (self, hour=0, minute=0, second=0):
self.hour = hour
self. minute = minute
self.second = second

It is common for the parameters ofnit __to have the same names as the attributes.
The statement

self.hour = hour
stores the value of the paramehbeur as an attribute in the new Time objesetf .

The parameters are optional, so if you Gathe with no arguments, you get the default
values.

>>> time = Time()
>>> time.print_time()
00:00:00

If you provide one argument, it overridasur :

>>> time = Time (9)
>>> time.print_time()
09:00:00

If you provide two arguments, they overridleur andminute .

>>> time = Time(9, 45)
>>> time.print_time()
09:45:00

And if you provide three arguments, they override all threfadlt values.
Exercise 15.2.Write an init method for th@oint class that takes andy as optional
parameters and assigns them to the corresponding attgbute

15.6 Thestr method

_str __is a special method name, likeinit __, that is supposed to return a string
representation of an object.

142 Chapter 15. Classes and methods

For example, here isgr method for Time objects:

inside class Time:

def _ str_ (self):
return ' %.2d:%.2d:%.2d ' % (self.hour, self.minute, self.second)

When youprint an object, Python invokes tis& method:

>>> time = Time(9, 45)
>>> print(time)
09:45:00

When | write a new class, | almost always start by writingit __, which makes it
easier to instantiate objects, andtr __, which is almost always useful for debugging.
Exercise 15.3.Write astr method for thePoint class. Create a Point object and
print it.

15.7 Operator overloading

By defining other special methods, you can specify the behafioperators on user-
defined types. For example, if you defineatl method for theTime class, you can
use thet operator on Time objects.

Here is what the definition might look like:

inside class Time:

def _add_ (self, other):
seconds = self.time_to_int() + other.time_to_int()
return int_to_time(seconds)

And here is how you could use it:

>>> start = Time(9, 45)
>>> duration = Time(l, 35)
>>> print(start + duration)
11:20:00

When you apply the operator to Time objects, Python invokeadd __. When you
print the result, Python invokesstr __. So there is quite a lot happening behind the
scenes!

Changing the behavior of an operator so that it works with-deéined types is called
operator overloading. For every operator in Python there is a corresponding apeci
method, like__add __.

Exercise 15.4.Write anadd method for the Point class.

15.8. Type-based dispatch 143

15.8 Type-based dispatch

In the previous section we added two Time objects, but yon milght want to add an
integer to a Time object. The following is an alternativesien of __add __ that checks
the type ofother and invokes eithexdd _time or increment

inside class Time:

def _add_ (self, other):
if isinstance(other, Time):
return self.add_time(other)
else:
return self.increment(other)

def add_time(self, other):
seconds = self.time_to_int() + other.time_to_int()
return int_to_time(seconds)

def increment(self, seconds):
seconds += self.time_to_int()
return int_to_time(seconds)

The built-in functionisinstance takes a value and a class object, and retiliros if
the value is an instance of the class.

If other is a Time object, add __ invokesadd _time . Otherwise it assumes that the
seconds parameter is a number and invakesment . This operation is called a
type-based dispatchbecause it dispatches the computation to different methasisd
on the type of the arguments.

Here are examples that use theperator with different types:

>>> start = Time(9, 45)
>>> duration = Time(1, 35)
>>> print(start + duration)
11:20:00

>>> print(start + 1337)
10:07:17

Unfortunately, this implementation of addition is not contative. If the integer is the
first operand, you get

>>> print(1337 + start)
TypeError: unsupported operand type(s) for +:

int ' and ' instance
The problem is, instead of asking the Time object to add agan Python is asking
an integer to add a Time object, and it doesn’t know how to . tiBut there is a

clever solution for this problem, thadd method, which stands for “right-side add.”

144 Chapter 15. Classes and methods

This method is invoked when a Time object appears on the sigktof thet operator.
Here’s the definition:

inside class Time:

def _ radd__ (self, other):
return self.__add__(other)

And here’s how it's used:

>>> print(1337 + start)

10:07:17

Exercise 15.5.Write anadd method for Points that works with either a Point object or
atuple:

« If the second operand is a Point, the method should retureva Roint whose x
coordinate is the sum of the x coordinates of the operands|ikewise for the y
coordinates.

* If the second operand is a tuple, the method should add thieeliement of the
tuple to the x coordinate and the second element to the y cwig] and return
a new Point with the result.

15.9 Polymorphism

Type-based dispatch is useful when it is necessary, buu(fately) it is not always
necessary. Often you can avoid it by writing functions thatkvcorrectly for argu-
ments with different types.

Many of the functions we wrote for strings will actually wdide any kind of sequence.
For example, in Section 12.1 we usistogram to count the number of times each
letter appears in a word.

def histogram(s):

d=1{
for ¢ in s:
if ¢ not in d:
dc] =1
else:
dlc] = d[c]+1
return d

This function also works for lists, tuples, and even dicsioes, as long as the elements
of s are hashable, so they can be used as kegs in

15.10. Exercises 145

>>>t = "spam', 'egg', 'spam', 'spam', 'bacon', 'spam']
>>> histogram(t)
{*bacon': 1, 'egg': 1 'spam : 4}

Functions that can work with several types are cgtlelymorphic.

Many of the built-in functions are polymorphic. For examlen works with any kind
of sequence, as long as the elements support the additioatope

>>> t = [1, 2.0, 42L]
>>> print(sum(t))
45.0

Since Time objects provide @dd method, they work witlsum:

>>> t1 = Time(7, 43)

>>> t2 = Time(7, 41)

>>> t3 = Time(7, 37)

>>> total = sum([tl, t2, t3])
>>> print(total)

23:01:00

In general, if all of the operations inside a function workiwa given type, then the
function works with that type.

The best kind of polymorphism is the unintentional kind, wehgou discover that a
function you have already written can be applied to a typeneer planned for.

15.10 Exercises

Exercise 15.6.Write a definition for a class namé&ngaroo with the following meth-
ods:

1. An_lnit __ method that initializes an attribute nameduch _contents to an
empty list.

2. A method nameput _in _pouch that takes an object of any type and adds it to
pouch _contents

Test your code by creating tw&ngaroo objects, assigning them to variables named
kanga androo , and then addingoo to the contents dfanga’s pouch.

15.11 Glossary

object-oriented language: A language that provides features, such as user-defined
classes and inheritance, that facilitate object-orieptedramming.

146 Chapter 15. Classes and methods

object-oriented programming: A style of programming in which data and the oper-
ations that manipulate it are organized into classes antodst

method: A function that is defined inside a class definition and is kagbon instances
of that class.

subject: The object a method is invoked on.

operator overloading: Changing the behavior of an operator likgo it works with a
user-defined type.

type-based dispatch: A programming pattern that checks the type of an operand and
invokes different functions for different types.

polymorphic: Pertaining to a function that can work with more than one type

Chapter 16

Inheritance

In this chapter we will develop classes to represent plagargs, decks of cards, and
poker hands. If you don't play poker, don't worry; I'll telloys what you need to know
for the exercises.

But if you are not familiar with common playing cards, now Mebe a good time to
get a deck, or else this chapter might not make much sense.

16.1 Card objects

There are fifty-two cards in a deck, each of which belongs wafrfour suits and one
of thirteen ranks. The suits are Spades, Hearts, DiamondsChibs (in descending
order in bridge). The ranks are Ace, 2, 3, 4,5, 6, 7, 8, 9, 1€k,JQueen, and King.
Depending on the game that you are playing, an Ace may be tilglwe King or lower
than 2.

If we want to define a new object to represent a playing cand, ébvious what the
attributes should berank andsuit . It is not as obvious what type the attributes
should be. One possibility is to use strings containing wditek "Spade" for suits and
"Queen" for ranks. One problem with this implementation is that itukbnot be easy
to compare cards to see which had a higher rank or suit.

An alternative is to use integerse@acodethe ranks and suits. In this context, “encode
means that we are going to define a mapping between numbemsiasdor between
numbers and ranks. This kind of encoding is not meant to berts@hat would be
“encryption”).

For example, this table shows the suits and the correspgiitieger codes:

148 Chapter 16. Inheritance

Spades — 3
Hearts — 2
Diamonds +— 1
Clubs — 0

This code makes it easy to compare cards; because highensjtto higher numbers,
we can compare suits by comparing their codes.

The mapping for ranks is fairly obvious; each of the numérniaaks maps to the cor-
responding integer, and for face cards:

Jack — 11
Queen — 12
King — 13

| am using the— symbol to make is clear that these mappings are not part &httien
program. They are part of the program design, but they dgear explicitly in the
code.

The class definition fo€ard looks like this:

class Card:
""represents a standard playing card.

mm

def _init_ (self, suit=0, rank=2):
self.suit = suit
self.rank = rank

As usual, thenit method takes an optional parameter for each attribute. €fsautd
card is the 2 of Clubs.

To create a Card, you callard with the suit and rank of the card you want.
threeOfClubs = Card(3, 1)

In the next section we'll figure out which card that is.

16.2 Class attributes

In order to print Card objects in a way that people can easiyly we need a mapping
from the integer codes to the corresponding ranks and sitetural way to do that
is with lists of strings. We assign these listsctass attributes

inside class Card:

suit names = [' Clubs ', 'Diamonds', 'Hearts ', ' Spades']
rank_names = [None, 'Ace', '2', "3, "4, '5" ['6", "7,

16.2. Class attributes 149

"8, "9, "10", '"Jack', 'Queen', 'King']

def _ str (self):
return ' %s of %s' % (Card.rank_names[self.rank],
Card.suit_names][self.suit])

Becaussauit _names andrank _names are defined outside of any method, they are class
attributes; that is, they are associated with the cGasg rather than with a particular
Card instance.

Attributes likesuit andrank are more precisely calledstance attributes because
they are associated with a particular instance.

Both kinds of attribute are accessed using dot notationekample, in__str __, self
is a Card object, andelf.rank is its rank. Similarly,Card is a class object, and
Card.rank _names is a list of strings associated with the class.

Every card has its owsuit andrank , but there is only one copy afit _names and
rank _names.

Finally, the expressio@ard.rank_names[self.rank] means “use the attributenk
from the objectself as an index into the lisank _names from the clas<Card, and
select the appropriate string.”

The first element ofank _names is None because there is no card with rank zero. By
including None as a place-keeper, we get a mapping with the nice propertyttiba
index 2 maps to the string , and so on.

With the methods we have so far, we can create and print cards:

>>> cardl = Card(l, 11)
>>> print(cardl)
Jack of Diamonds

Here is a diagram that shows tBerd class object and one Card instance:

classobj list
Card —= suit_names
list
rank_names
dict

cardl —=| suit — 1

rank — 11

150 Chapter 16. Inheritance

Card is a class object, so it has typlassobj . cardl has typeCard. (To save space,
| didn’t draw the contents afuit _names andrank _names).

16.3 Comparing cards

For built-in types, there are conditional operatotsX, ==, etc.) that compare values
and determine when one is greater than, less than, or eqalabtber. For user-defined
types, we can override the behavior of the built-in opesatoy providing a method

named__cmp__.

Thecmp method takes two parametesslf andother , and returns a positive number
if the first object is greater, a negative number if the seaunjdct is greater, and 0 if
they are equal to each other.

The correct ordering for cards is not obvious. For examplaciis better, the 3 of
Clubs or the 2 of Diamonds? One has a higher rank, but the bdgea higher suit. In
order to compare cards, you have to decide whether ranktossubre important.

The answer might depend on what game you are playing, butep t#engs simple,
we’ll make the arbitrary choice that suit is more importaatall of the Spades outrank
all of the Diamonds, and so on.

With that decided, we can writecmp__:

inside class Card:

def __cmp__ (self, other):
check the suits
if self.suit > other.suit: return 1
if self.suit < other.suit: return -1

suits are the same... check ranks
if self.rank > other.rank: return 1
if self.rank < other.rank: return -1

ranks are the same... it 's a tie
return 0

You can write this more concisely using tuple comparison:

inside class Card:

def __cmp__(self, other):
t1 = self.suit, self.rank
t2 = other.suit, other.rank
return cmp(tl, t2)

16.4. Decks 151

The built-in functioncmp has the same interface as the methathp__: it takes two
values and returns a positive number if the first is largeregative number of the
second is larger, and 0 if they are equal.

Exercise 16.1. Write a __cmp__ method for Time objects. Hint: you can use tuple
comparison, but you also might consider using integer suifiton.

16.4 Decks

Now that we have Card objects, the next step is to define a taspresent decks.
Since a deck is made up of cards, a natural choice is for eack &gect to contain a
list of cards as an attribute.

The following is a class definition fobeck. Theinit method creates the attribute
cards and generates the standard set of fifty-two cards:

class Deck:

def __init_ (self):
self.cards = []
for suit in range(4):
for rank in range(1, 14):
card = Card(suit, rank)
self.cards.append(card)

The easiest way to populate the deck is with a nested loopotitez loop enumerates
the suits from 0 to 3. The inner loop enumerates the ranks fréonl 3. Each iteration
of the inner loop creates a new Card with the current suit anl,rand appends it to
self.cards

16.5 Printing the deck

Here is astr method forDeck :

#inside class Deck:

def _ str_ (self):
res =]
for card in self.cards:
res.append(str(card))
return " \n "' .join(res)

This method demonstrates an efficient way to accumulatege kstring, by building
a list of strings and then usinjgin . The built-in functionstr invokes the_str __
method on each card and returns the string representation.

152 Chapter 16. Inheritance

Since we invokgoin on a newline character, the cards are separated by newlines.
Here’s what the result looks like:

>>> deck = Deck()
>>> print(deck)
Ace of Clubs

2 of Clubs

3 of Clubs

10 of Spades
Jack of Spades
Queen of Spades
King of Spades

Even though the result appears on 52 lines, it is one longgsthiat contains newlines.

16.6 Add, remove, shuffle and sort

To deal cards, we would like a method that removes a card fheaiéck and returns
it. The list methocpop provides a convenient way to do that:

#inside class Deck:

def pop_card(self):
return self.cards.pop()

Sincepop removes théastcard in the list, we are in effect dealing from the bottom of
the deck.

To add a card, we can use the list metlappend :

#inside class Deck:

def add_card(self, card):
self.cards.append(card)

A method like this that uses another function without doingchreal work is some-
times called aveneer The metaphor comes from woodworking, where it is common
to glue a thin layer of good quality wood to the surface of aagiez piece of wood.

In this case we are defining a “thin” method that expressest afieration in terms that
are appropriate for decks.

As another example, we can write a Deck method nasheffle using the function
shuffle from therandom module:

16.7. Inheritance 153

inside class Deck:

def shuffle(self):
random.shuffle(self.cards)

Don't forget to importrandom .
Exercise 16.2.Write a Deck method namedrt that uses the list methadrt to sort
the cards in aDeck. sort uses the_cmp__ method we defined to determine sort order.

16.7 Inheritance

The language feature most often associated with objeety@il programming im-
heritance. Inheritance is the ability to define a new class that is a fredliversion of
an existing class.

It is called “inheritance” because the new class inheritsrifethods of the existing
class. Extending this metaphor, the existing class is @dhe parent class and the
new class is called thehild.

As an example, let's say we want a class to represent a “htrat,is, the set of cards
held by one player. A hand is similar to a deck: both are madef apset of cards, and
both require operations like adding and removing cards.

A hand is also different from a deck; there are operations aet\fior hands that don’t
make sense for a deck. For example, in poker we might comparénands to see
which one wins. In bridge, we might compute a score for a hanorder to make a
bid.

This relationship between classes—similar, but differerrdb itself to inheritance.

The definition of a child class is like other class definitidmst the name of the parent
class appears in parentheses:

class Hand(Deck):
""represents a hand of playing cards

(I

This definition indicates thatand inherits fromDeck ; that means we can use methods
like pop_card andadd _card for Hands as well as Decks.

Hand also inherits thénit method fromDeck, but it doesn’t really do what we want:
instead of populating the hand with 52 new cards,itite method for Hands should
initialize cards with an empty list.

If we provide aninit method in theHand class, it overrides the one in tBeck class:

inside class Hand:

def __init_ (self, label= ")

154 Chapter 16. Inheritance

self.cards = []
self.label = label

So when you create a Hand, Python invokesiittiis method:

>>> hand = Hand(' new hand")
>>> print(hand.cards)

I

>>> print(hand.label)

new hand

But the other methods are inherited fra@reck, so we can uspop _card andadd _card
to deal a card:

>>> deck = Deck()

>>> card = deck.pop_card()
>>> hand.add_card(card)
>>> print(hand)

King of Spades

The next natural step is to encapsulate this code in a metitstimove_cards :

#inside class Deck:

def move_cards(self, hand, num):
for i in range(num):
hand.add_card(self.pop_card())

move_cards takes two arguments, a Hand object and the number of cardsaio d
modifies bottself andhand, and return®one.

In some games, cards are moved from one hand to anothernoaffand back to the
deck. You can usmove_cards for any of these operationself can be either a Deck
or a Hand, andtand, despite the name, can also bBezk.

Exercise 16.3.Write a Deck method calledeal _hands that takes two parameters,
the number of hands and the number of cards per hand, and thates new Hand
objects, deals the appropriate number of cards per hand,retutns a list of Hand

objects.

Inheritance is a useful feature. Some programs that woulcepetitive without in-
heritance can be written more elegantly with it. Inheritagan facilitate code reuse,
since you can customize the behavior of parent classesutittaving to modify them.
In some cases, the inheritance structure reflects the hataature of the problem,
which makes the program easier to understand.

On the other hand, inheritance can make programs difficutad. When a method is
invoked, it is sometimes not clear where to find its definitidihe relevant code may
be scattered among several modules. Also, many of the tkiegsan be done using
inheritance can be done as well or better without it.

16.8. Class diagrams 155

16.8 Class diagrams

So far we have seen stack diagrams, which show the state afgaaon, and object
diagrams, which show the attributes of an object and thdiresa These diagrams
represent a snapshot in the execution of a program, so theygehas the program
runs.

They are also highly detailed, and for some applicatioresdtailed. A class diagrams
is a more abstract representation of the structure of a anegrinstead of showing
individual objects, it shows classes and the relationshigtaeen them.

There are several kinds of relationship between classes:

¢ Objects in one class might contain references to objectother class. For
example, each Rectangle contains a reference to a PointaahdDeck contains
references to many Cards. This kind of relationship is ddHAS-A, as in, “a
Rectangle has a Point.”

¢ One class might inherit from another. This relationshipaedIS-A, as in, “a
Hand is a kind of a Deck.”

* Once class might depend on another in the sense that chamngesclass would
require changes in the other.

A class diagramis a graphical representation of these relationships Biwtasses.
For example, this diagram shows the relationships betwageh, Deck andHand.

*

Deck Card

i

Hand

The arrow with a hollow triangle head represents an |IS-Atielahip; in this case it
indicates that Hand inherits from Deck.

The standard arrow head represents a HAS-A relationshotiisncase a Deck has
references to Card objects.

The star) near the arrow head israultiplicity ; it indicates how many Cards a Deck
has. A multiplicity can be a simple number, lik2, a range, like..7 or a star, which
indicates that a Deck can have any number of Cards.

16.9 Glossary

encode: To represent one set of values using another set of valuesrstracting a
mapping between them.

156 Chapter 16. Inheritance

class attribute: An attribute associated with a class object. Class atethate defined
inside a class definition but outside any method.

instance attribute: An attribute associated with an instance of a class.

veneer: A method or function that provides a different interface tmther function
without doing much computation.

inheritance: The ability to define a new class that is a modified version a&aipusly
defined class.

parent class: The class from which a child class inherits.

child class: A new class created by inheriting from an existing classp alslled a
“subclass.”

IS-A relationship: The relationship between a child class and its parent class.

HAS-A relationship: The relationship between two classes where instances of one
class contain references to instances of the other.

class diagram: A diagram that shows the classes in a program and the resaijomn
between them.

multiplicity: A notation in a class diagram that shows, for a HAS-A relatfop, how
many references there are to instances of another class.

16.10 Exercises

The following are the possible hands in poker, in increasirdgr of value (and de-
creasing order of probability):

pair: two cards with the same rank
two pair: two pairs of cards with the same rank
three of a kind: three cards with the same rank

straight: five cards with ranks in sequence (aces can be high or loAces@-3-4-5
is a straight and so iH-Jack-Queen-King-Ace , butQueen-King-Ace-2-3 is
not.)

flush: five cards with the same suit

full house: three cards with one rank, two cards with another

four of a kind: four cards with the same rank

straight flush: five cards in sequence (as defined above) and with the same suit

The goal of these exercises is to estimate the probabilitgirafving these various
hands.

16.10. Exercises 157

1. Download the following files frorthinkpython.com/code

Card.py : A complete version of th€ard , Deck andHand classes in this chap-
ter.

PokerHand.py : An incomplete implementation of a class that represents a
poker hand, and some code that tests it.

2. If you runPokerHand.py , it deals six 7-card poker hands and checks to see if
any of them contains a flush. Read this code carefully befouegp on.

3. Add methods t@okerHand.py namechas _pair , has _twopair , etc. that return
True or False according to whether or not the hand meets tkeard criteria.
Your code should work correctly for “hands” that contain amymber of cards
(although 5 and 7 are the most common sizes).

4. Write a method namedtassify that figures out the highest-value classification
for a hand and sets thabel attribute accordingly. For example, a 7-card hand
might contain a flush and a pair; it should be labeled “flush”.

5. When you are convinced that your classification methodsvarking, the next
step is to estimate the probablities of the various hands.teVérifunction in
PokerHand.py that shuffles a deck of cards, divides it into hands, classifie
hands, and counts the number of times various classificatippear.

6. Print a table of the classifications and their probabsiti Run your program
with larger and larger numbers of hands until the outputesloonverge to a
reasonable degree of accuracy.

158 Chapter 16. Inheritance

Part IV

Appendies

Appendix A

Debugging

Different kinds of errors can occur in a program, and it isfulsi distinguish among
them in order to track them down more quickly:

e Syntax errors are produced by Python when it is transldtiegource code into
byte code. They usually indicate that there is somethinghg/mith the syntax
of the program. Example: Omitting the colon at the endddfastatement yields
the somewhat redundant mess&getaxError: invalid syntax

* Runtime errors are produced by the runtime system if somgthoes wrong
while the program is running. Most runtime error messagelsiite information
about where the error occurred and what functions were éxgcuExample:
An infinite recursion eventually causes a runtime error o&imum recursion
depth exceeded.”

« Semantic errors are problems with a program that compildgans but doesn’t
do the right thing. Example: An expression may not be evatliat the order
you expect, yielding an unexpected result.

The first step in debugging is to figure out which kind of errouyare dealing with.
Although the following sections are organized by error {yg@mme techniques are ap-
plicable in more than one situation.

A.1 Syntax errors

Syntax errors are usually easy to fix once you figure out whey #ire. Unfortu-
nately, the error messages are often not helpful. The mostmmm messages are
SyntaxError; invalid syntax andSyntaxError: invalid token , heither of
which is very informative.

162 Appendix A. Debugging

On the other hand, the message does tell you where in thegonoire problem oc-
curred. Actually, it tells you where Python noticed a probjevhich is not necessarily
where the error is. Sometimes the error is prior to the locatif the error message,
often on the preceding line.

If you are building the program incrementally, you shouldéna good idea about where
the error is. It will be in the last line you added.

If you are copying code from a book, start by comparing youtectm the book’s code
very carefully. Check every character. At the same timegratver that the book might
be wrong, so if you see something that looks like a syntax gitnmight be.

Here are some ways to avoid the most common syntax errors:
1. Make sure you are not using a Python keyword for a variadhee

2. Check that you have a colon at the end of the header of evanpaund state-
ment, includingor , while ,if , anddef statements.

3. Check that indentation is consistent. You may indent wither spaces or tabs
but it's best not to mix them. Each level should be nestedahgesamount.

4. Make sure that any strings in the code have matching dontatarks.

5. If you have multiline strings with triple quotes (single double), make sure
you have terminated the string properly. An unterminateidgtmay cause an
invalid token error at the end of your program, or it may treat the following
part of the program as a string until it comes to the next gtrilm the second
case, it might not produce an error message at all!

6. An unclosed bracket{={, or[—makes Python continue with the next line as
part of the current statement. Generally, an error occum®stl immediately in
the next line.

7. Check for the classkinstead of= inside a conditional.

If nothing works, move on to the next section...

A.1.1 |can’t get my program to run no matter what | do.

If the compiler says there is an error and you don't see it,itfight be because you and
the compiler are not looking at the same code. Check youranegiing environment
to make sure that the program you are editing is the one Pys$htoying to run. If you
are not sure, try putting an obvious and deliberate syntat at the beginning of the
program. Now run (or import) it again. If the compiler dogdirid the new error, there
is probably something wrong with the way your environmersgisup.

If this happens, one approach is to start again with a newanogike “Hello, World!,”
and make sure you can get a known program to run. Then grgcaddl the pieces of
the new program to the working one.

A.2. Runtime errors 163

A.2 Runtime errors

Once your program is syntactically correct, Python can irnpp@and at least start run-
ning it. What could possibly go wrong?

A.2.1 My program does absolutely nothing.

This problem is most common when your file consists of fumstiand classes but does
not actually invoke anything to start execution. This maynbentional if you only plan
to import this module to supply classes and functions.

If it is not intentional, make sure that you are invoking adtion to start execution,
or execute one from the interactive prompt. Also see theWwrbExecution” section
below.

A.2.2 My program hangs.

If a program stops and seems to be doing nothing, we say itaisdimg.” Often that
means that it is caught in an infinite loop or an infinite remmns

« Ifthereis a particular loop that you suspect is the probkeda gorint statement
immediately before the loop that says “entering the loopd another immedi-
ately after that says “exiting the loop.”

Run the program. If you get the first message and not the segontye got an
infinite loop. Go to the “Infinite Loop” section below.

* Most of the time, an infinite recursion will cause the pragr® run for a while
and then produce a “RuntimeError: Maximum recursion degteeded” error.
If that happens, go to the “Infinite Recursion” section below

If you are not getting this error but you suspect there is &lpra with a recursive
method or function, you can still use the techniques in tidiriite Recursion”
section.

« If neither of those steps works, start testing other loombs@her recursive func-
tions and methods.

« If that doesn’'t work, then it is possible that you don't uratand the flow of
execution in your program. Go to the “Flow of Execution” sectbelow.

Infinite Loop

If you think you have an infinite loop and you think you know wih@op is causing
the problem, add print statement at the end of the loop that prints the values of the
variables in the condition and the value of the condition.

For example:

164 Appendix A. Debugging

while x >0 and y < 0 :
do something to x
do something to y

print("x: ", X)

print("y: ", y)
print("condition: ", (x > 0 and y < 0))

Now when you run the program, you will see three lines of otfipueach time through
the loop. The last time through the loop, the condition stiddfalse . If the loop
keeps going, you will be able to see the values @ndy, and you might figure out
why they are not being updated correctly.

Infinite Recursion

Most of the time, an infinite recursion will cause the progr@mun for a while and
then produce &laximum recursion depth exceeded error.

If you suspect that a function or method is causing an infigitairsion, start by check-
ing to make sure that there is a base case. In other worde,gheuld be some condi-
tion that will cause the function or method to return withmaking a recursive invo-
cation. If not, then you need to rethink the algorithm anahtdg a base case.

If there is a base case but the program doesn’t seem to beingathadd aprint
statement at the beginning of the function or method thattgthe parameters. Now
when you run the program, you will see a few lines of outputtiene the function or
method is invoked, and you will see the parameters. If tharpaters are not moving
toward the base case, you will get some ideas about why not.

Flow of Execution

If you are not sure how the flow of execution is moving througluryprogram, add
print statements to the beginning of each function with a mesdeag&antering func-
tion foo ,” wherefoo is the name of the function.

Now when you run the program, it will print a trace of each fumie as it is invoked.

A.2.3 When I run the program | get an exception.

If something goes wrong during runtime, Python prints a rmgsghat includes the
name of the exception, the line of the program where the proldccurred, and a
traceback.

The traceback identifies the function that is currently ragnand then the function
that invoked it, and then the function that invokiisét, and so on. In other words, it

A.2. Runtime errors 165

traces the path of function invocations that got you to wiyeng are. It also includes
the line number in your file where each of these calls occurs.

The first step is to examine the place in the program wherertioe eccurred and see
if you can figure out what happened. These are some of the rooshon runtime
errors:

NameError: You are trying to use a variable that doesn'’t exist in theentrenviron-
ment. Remember that local variables are local. You canriet te them from
outside the function where they are defined.

TypeError: There are several possible causes:

* You are trying to use a value improperly. Example: indexangtring, list,
or tuple with something other than an integer.

» There is a mismatch between the items in a format string hadtéms
passed for conversion. This can happen if either the nunftiteros does
not match or an invalid conversion is called for.

* You are passing the wrong number of arguments to a functionaethod.
For methods, look at the method definition and check that teegaram-
eter isself . Then look at the method invocation; make sure you are in-
voking the method on an object with the right type and prayjdhe other
arguments correctly.

KeyError: You are trying to access an element of a dictionary using avk&ye that
the dictionary does not contain.

AttributeError: You are trying to access an attribute or method that doesxigit e

IndexError: The index you are using to access a list, string, or tuplegatgr than its
length minus one. Immediately before the site of the erd,aorint statement
to display the value of the index and the length of the armyhé array the right
size? Is the index the right value?

A.2.4 | added so manyrint statements | get inundated with out-
put.

One of the problems with usirgint statements for debugging is that you can end up
buried in output. There are two ways to proceed: simplifydhgut or simplify the
program.

To simplify the output, you can remove or comment pinit ~ statements that aren’t
helping, or combine them, or format the output so it is edsienderstand.

To simplify the program, there are several things you can [eiost, scale down the
problem the program is working on. For example, if you ardisgran array, sort a

166 Appendix A. Debugging

smallarray. If the program takes input from the user, give it theg@est input that
causes the problem.

Second, clean up the program. Remove dead code and re@gfamigrogram to make
it as easy to read as possible. For example, if you suspec¢hthproblem is in a deeply
nested part of the program, try rewriting that part with diengtructure. If you suspect
a large function, try splitting it into smaller functionsdatesting them separately.

Often the process of finding the minimal test case leads ythetbug. If you find that
a program works in one situation but not in another, thatgjei a clue about what is
going on.

Similarly, rewriting a piece of code can help you find subtig® If you make a change
that you think doesn't affect the program, and it does, thattp you off.

A.3 Semantic errors

In some ways, semantic errors are the hardest to debug, deettaicompiler and the
runtime system provide no information about what is wronglyou know what the
program is supposed to do, and only you know that it isn’t dain

The first step is to make a connection between the progranatekthe behavior you
are seeing. You need a hypothesis about what the progranualigadoing. One of
the things that makes that hard is that computers run so fast.

You will often wish that you could slow the program down to ramspeed, and with
some debuggers you can. But the time it takes to insert a fdlapleeedprint state-
ments is often short compared to setting up the debuggerting and removing break-
points, and “walking” the program to where the error is ocicy.

A.3.1 My program doesn’t work.

You should ask yourself these questions:

* Is there something the program was supposed to do but wisiebnd seem to
be happening? Find the section of the code that performéuthetion and make
sure it is executing when you think it should.

* Is something happening that shouldn’t? Find code in yoogram that performs
that function and see if it is executing when it shouldn’t.

* Is a section of code producing an effect that is not what ymeeted? Make sure
that you understand the code in question, especially ifilires invocations to
functions or methods in other Python modules. Read the dentation for the
functions you invoke. Try them out by writing simple test easand checking
the results.

A.3. Semantic errors 167

In order to program, you need to have a mental model of howrprog work. If you
write a program that doesn’t do what you expect, very oftenptoblem is not in the
program; it’s in your mental model.

The best way to correct your mental model is to break the pragnto its components
(usually the functions and methods) and test each compamigpendently. Once you
find the discrepancy between your model and reality, you o she problem.

Of course, you should be building and testing componentsasigvelop the program.
If you encounter a problem, there should be only a small amofunew code that is
not known to be correct.

A.3.2 [I've got a big hairy expression and it doesn’t do what | &-
pect.

Writing complex expressions is fine as long as they are reagdai they can be hard to
debug. Itis often a good idea to break a complex expressiomiseries of assignments
to temporary variables.

For example:
self.hands]i].addCard(self.hands[self.findNeighbor(i)].popCard())
This can be rewritten as:

neighbor = self.findNeighbor(i)
pickedCard = self.hands[neighbor].popCard()
self.hands]i].addCard(pickedCard)

The explicit version is easier to read because the variadnees provide additional
documentation, and it is easier to debug because you cak ttetypes of the inter-
mediate variables and display their values.

Another problem that can occur with big expressions is thatdrder of evaluation
may not be what you expect. For example, if you are trangjalia expressiog. into
Python, you might write:

y = x [/ 2 * math.pi

That is not correct because multiplication and divisionehthe same precedence and
are evaluated from left to right. So this expression congxatz2.

A good way to debug expressions is to add parentheses to imabkeder of evaluation
explicit:

y = x [/ (2 * math.pi)

Whenever you are not sure of the order of evaluation, use theeees. Not only will
the program be correct (in the sense of doing what you inndtewill also be more
readable for other people who haven't memorized the rulgsexfedence.

168 Appendix A. Debugging

A.3.3 I've got a function or method that doesn’t return what | ex-
pect.

If you have aeturn statement with a complex expression, you don’t have a chance
print thereturn value before returning. Again, you can use a temporary blridor
example, instead of:

return self.hands|i].removeMatches()
you could write:

count = self.hands]i].removeMatches()
return count

Now you have the opportunity to display the valueadnt before returning.

A.3.4 I'mreally, really stuck and | need help.

First, try getting away from the computer for a few minutesonputers emit waves
that affect the brain, causing these effects:

* Frustration and/or rage.

» Superstitious beliefs (“the computer hates me”) and nagiinking (“the pro-
gram only works when | wear my hat backward”).

» Random-walk programming (the attempt to program by wgitavery possible
program and choosing the one that does the right thing).

If you find yourself suffering from any of these symptoms, gptand go for a walk.
When you are calm, think about the program. What is it doing? \&ffeesome possible
causes of that behavior? When was the last time you had a vggpkagram, and what
did you do next?

Sometimes it just takes time to find a bug. We often find bugswie are away from
the computer and let our minds wander. Some of the best pladesl bugs are trains,
showers, and in bed, just before you fall asleep.

A.3.5 No, I really need help.

It happens. Even the best programmers occasionally get. sRametimes you work
on a program so long that you can’t see the error. A fresh payes is just the thing.

Before you bring someone else in, make sure you have exltbtimte¢echniques de-
scribed here. Your program should be as simple as possitde;ai should be working

A.3. Semantic errors 169

on the smallest input that causes the error. You shouldraate statements in the ap-
propriate places (and the output they produce should be @drapsible). You should
understand the problem well enough to describe it concisely

When you bring someone in to help, be sure to give them therirdtion they need:

« If there is an error message, what is it and what part of tlegnam does it
indicate?

* What was the last thing you did before this error occurred? tMilese the last
lines of code that you wrote, or what is the new test case #ilaff

* What have you tried so far, and what have you learned?

When you find the bug, take a second to think about what you dwaud done to find
it faster. Next time you see something similar, you will béeato find the bug more
quickly.

Remember, the goal is not just to make the program work. Théigdo learn how to
make the program work.

Index

Make Way for Ducklings81
+=, 85

None, 51

append , 151

int method, 141
isinstance , 97

is operator, 75

len , 30

setdefault , 117

try statement, 107

abecedarian, 81
absolute path, 109
access, 72
accumulator, 86, 88
algorithm, 5, 11
aliasing, 76, 88, 127
ambiguity, 8
argument, 23, 48, 58, 77
list, 77
optional, 33, 79, 115
assignment, 14, 20, 61
multiple , 68
Attribute, 129
attribute, 124, 130
class, 148, 156
instance, 156
AttributeError, 165

base case, 93, 100
body, 43, 58

loop, 63
boolean expression, 37, 42
boolean function, 53
bracket operator, 29
branch, 39, 43

bug, 6, 11

call

function, 23
call graph, 98, 118
Card, 147
catch, 109
chained conditional, 39, 43
character, 29
child class, 153, 156
circular definition, 94
class, 123, 130

Card, 147

parent, 153

Point, 141
class attribute, 148, 156
class diagram, 156
class object, 124, 130
comment, 19, 21
comparison

string, 40
compile, 4, 11
compile-time error, 161
compiler, 161
complete language, 94
composition, 26, 27, 56, 151
compound statement, 38, 43
computational pattern, 83
concatenate, 79
concatenation, 31, 32, 34, 81

list, 73
condition, 38, 43, 63, 163
conditional

chained, 39, 43
conditional branching, 38
conditional execution, 38

Index 171

conditional operator, 150 empty string, 34
conditional statement, 43 encode, 147, 155
conversion encrypt, 147

type, 24 equivalent, 76, 88
copy, 78 error

copy module, 127
copying, 78, 127
counter, 34, 83

data type

dictionary, 111
dead code, 52, 58
debugging, 6, 11, 161
deck, 151
decrement, 62, 68
deep copy, 130
definition

circular, 94

function, 45
deletion

list, 74
delimiter, 79, 88
development plan

incremental, 53
diagram

call graph, 118

class, 156

compile-time, 161
IndexError, 73
runtime, 7, 93, 161
semantic, 7, 161, 166
syntax, 6, 161
TypeError, 32

error checking, 97

error messages, 161

exception, 7,11, 115, 161, 164
Attribute, 129
catching, 107
IndexError, 30
IOError, 107
KeyError, 112
NameError, 49
RuntimeError, 93
SyntaxError, 27
TypeError, 30, 105, 140

executable, 11

execution
flow, 164

expression, 16, 21

object, 124, 126, 128, 130, 131, 149 big and hairy, 167

stack, 50, 77

boolean, 37, 42

state, 14, 61, 68, 72, 76, 116, 124,

126, 128, 131, 149
dictionary, 111, 118, 165

looping, 114
directory, 109
division
floating-point, 17
floor, 17
integer, 17
divmod, 134
docstring, 123
dot notation, 26, 27, 33
Doyle, Arthur Conan, 7

element, 71, 88
empty list, 71

factorial function, 94, 97
Fibonacci function, 96, 98
file, 103

filter, 86, 88

float, 13

floating-point, 20
floating-point division, 17
floor division, 17, 21

flow of execution, 47, 58, 164
for loop, 81, 82

formal language, 8, 11
format operator, 104, 108, 165
format sequence, 109

format string, 104, 109
frabjuous, 94

172 Index

frame, 50, 58, 92, 98 incremental development, 58
Franklin, Benjamin, viii incremental program development, 162
fruitful function, 51, 57 index, 30, 34, 88, 111, 165
function, 27, 45, 131, 138 negative, 30
argument, 48 IndexError, 30, 73, 165
boolean, 53 infinite loop, 63, 68, 163
composition, 56 infinite recursion, 93, 97, 101, 163, 164
factorial, 94 inheritance, 153, 156
fruitful, 51 initialization method, 151
math, 25 initialize, 62
parameter, 48 instance, 124, 126, 130
recursive, 92 instance attribute, 156
void, 51 instantiation, 124
function call, 23, 58 int, 13
function definition, 45, 57, 58 integer, 20
function frame, 50, 58, 92, 98 integer division, 17
function type interpret, 4, 11
modifier, 133 invocation, 33, 34
pure, 132 invoke, 33
functional programming style, 134, 135 [OError, 107
IS-A, 156
gamma function, 97 item, 34, 71
generalization, 135 dictionary, 118
global variable, 119 iteration, 61, 63, 68
guardian, 58
key, 111,118
hanging, 163 key-value pair, 111, 118
HAS-A, 156 KeyError, 112, 165
hash function, 117, 118 keyword, 15, 21
hashable, 117, 118
hashtable, 118 language
header, 58 complete, 94
hello world, 9 formal, 8
high-level language, 3, 11 high-level, 3
hint, 98, 119 low-level, 3
histogram, 113, 118 natural, 8
Holmes, Sherlock, 7 programming, 3
safe, 7
identical, 76, 88 leap of faith, 96
immutable, 34 Linux, 7
immutable string, 32 list, 71, 78, 88
implementation, 118 as argument, 77
import, 27 copying, 78
in operator, 84 element, 72

increment, 62, 68 empty, 71

Index

173

membership, 84
nested, 71
of objects, 151
slice, 73
traversal, 82
list deletion, 74
list methods, 74
list operation, 73
list traversal, 88
literalness, 8
local variable, 49, 58
logical operator, 37, 38
lookup, 118
lookup, dictionary, 114
loop, 63
body, 63
condition, 163
for, 82
for loop, 81
infinite, 63, 163
nested, 151
traversal, 81
while, 63
low-level language, 3, 11

map, 88
map to, 147
mapping, 72, 88
math function, 25
McCloskey, Robert, 81
mental model, 167
method, 32, 34, 131, 138, 146
init , 141
initialization, 151
methods
list, 74
model
mental, 167
modifier, 133, 135
module, 25, 27
copy, 78, 127
module object, 25
modulus operator, 17, 21
multiple assignment, 61, 68
multiplicity, 156

mutable, 32
object, 127

NamekError, 49, 165
natural language, 8, 11
nested list, 71, 88
newline, 25, 61
None, 52, 58
number

random, 41

object, 34, 75, 76, 88, 123
class, 124
list of, 151
mutable, 127

object code, 11

object diagram, 124, 126, 128, 130, 131,

149
object-oriented language, 145

object-oriented programming, 137, 146,

153

object-oriented programming language,

137
operand, 16, 21
operation
list, 73
operator, 16, 21
+=, 85
is, 75
bracket, 29
conditional, 150
format, 104, 108, 165
in, 84
logical, 37, 38
modulus, 17, 21
overloading, 146
slice, 78
operator overloading, 142, 150
optional argument, 33, 79, 115
order of evaluation, 167
order of operations, 18
overloading, 146
override, 150

parameter, 48, 58

174

Index

parent class, 153, 156
parse, 8, 11
pass statement, 38
path, 109
pattern, 83
search, 115
persistent, 108
planned development, 135
poetry, 9
Point class, 141
polymorphic, 146
polymorphism, 144
portability, 11
portable, 3
precedence, 21, 167
print function, 10, 11, 165
printing
deck object, 151
object, 138
problem-solving, 11
program, 11
programming language, 3
prompt, 25
prose, 9
prototype and patch, 135
prototype development, 134
pure function, 132, 135

raise, 115
random number, 41
rank, 147
rectangle, 125
recursion, 91, 92, 94, 96, 100
base case, 93
infinite, 93, 97, 164
reduce, 86, 88
redundancy, 8
reference, 88
aliasing, 76
relative path, 109
repetition
list, 73
return statement, 92, 168
return value, 23, 52, 58, 126
reverse lookup, 118

reverse lookup, dictionary, 114
rules of precedence, 18, 21

runtime error, 7, 11, 93, 161, 164

RuntimeError, 93, 97

safe language, 7

scaffolding, 55, 58

script, 11

search, 34, 83, 115
semantic error, 7, 11, 161, 166
semantics, 7, 11

sequence, 29, 34, 71
shallow copy, 130

shuffle, 152

singleton, 118

slice, 31, 34,73, 78

sort, 153

source code, 11

stack diagram, 50, 58, 77, 92

state diagram, 14, 21, 61, 68, 72, 76, 116,

124,126, 128, 131, 149

statement, 20
assignment, 14, 61
compound, 38
conditional, 43
pass, 38
print, 10, 11, 165
raising, 115
return, 92, 168
while, 63

string, 13, 20, 78
immutable, 32
length, 30
slice, 31

string comparison, 40

string method, 32

string operation, 30

subclass, 153

subject, 146

suit, 147

syntax, 6, 11, 162

syntax error, 6, 11, 161

SyntaxError, 27

temporary variable, 52, 58, 167

Index 175

text file, 109
token, 11
traceback, 51, 58, 93, 164
traversal, 81, 83
list, 82
traverse, 34
Turing Thesis, 94
Turing, Alan, 94
type, 13, 20
dict, 111
file, 103
float, 13
int, 13
list, 71
str, 13
user-defined, 123
type checking, 97
type conversion, 24
type-based dispatch, 143, 146
TypeError, 30, 32, 105, 140, 165

underscore character, 15
update, 62, 68
user-defined type, 123

value, 13, 20, 75, 76, 118
ValueError, 115
variable, 14, 20

local, 49

temporary, 52, 58, 167
veneer, 152, 156
void function, 51, 57

while statement, 63

176 Index

