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Preface

The strange history of this book
In January 1999 I was preparing to teach an introductory programming class in Java. I
had taught it three times and I was getting frustrated. The failure rate in the class was
too high and even for students who succeeded, the overall level of achievement was too
low.

One of the problems I saw was the books. I had tried three different books (and read
a dozen more), and they all had the same problems. They were too big, with too
much unnecessary detail about Java, and not enough high-level guidance about how to
program. And they all suffered from the trap door effect: they would start out very
gradual and easy, and then somewhere around Chapter 5, the bottom would fall out.
The students would get too much new material, too fast, and I would spend the rest of
the semester picking up the pieces.

Two weeks before the first day of classes, I decided to write my own book. I wrote one
10-page chapter a day for 13 days. I made some revisions on Day 14 and then sent it
out to be photocopied.

My goals were:

• Keep it short. It is better for students to read 10 pages than not read 50 pages.

• Be careful with vocabulary. I tried to minimize the jargon and define each term
at first use.

• Build gradually. To avoid trap doors, I took the most difficult topics and split
them into a series of small steps.

• It’s not about the language; it’s about programming. I included the minumum
useful subset of Java and left out the rest.

I needed a title, so on a whim I chose How to Think Like a Computer Scientist.

My first version was rough, but it worked. Students did the reading, and they under-
stood enough that I could spend class time on the hard topics, the interesting topics and
(most important) letting the students practice.



viii Chapter 0. Preface

As a user and advocate of free software, I believe in the idea Benjamin Franklin ex-
pressed:

“As we enjoy great Advantages from the Inventions of others, we should
be glad of an Opportunity to serve others by any Invention of ours, and
this we should do freely and generously.”

So I released the book under the GNU Free Documenation License, which allows users
to copy, modify, and distribute the book.

What happened next is the cool part. Jeff Elkner, a high school teacher in Virginia,
adopted my book and translated it into Python. He sent me a copy of his translation,
and I had the unusual experience of learning Python by reading my own book.

Jeff and I revised the book, incorporated a case study by Chris Meyers, and released
How to Think Like a Computer Scientist: Learning with Python, also under the GNU
Free Documenation License.

At the same time, my wife and I started Green Tea Press, which distributes several of
my books electronically, and sells How to Think in hard copy.

I have been teaching with this book for more than five years now, and I have done a lot
more Python programming. I still like the structure of the book, but for some time I
have felt the need to make changes:

• Some of the examples in the first edition work better than others. In my classes
I have discarded the less effective ones and developed improvements.

• There are only a few exercises in the first edition. Now I have five years of
quizzes, exams and homeworks to choose from.

• I have been programming in Python for a while now and have a better apprecia-
tion of idiomatic Python. The book is still about programming, not Python, but
now I think the book gets more leverage from the language.

At the same time, Jeff has been working on his own second edition, customized for his
classes. Rather than cram everything into one book (which may be how other books
got so big), we decided to work on different versions. They are both under the Free
Documentation License, so users can choose one or combine material from both.

For my version, I am using the revised title How to Think Like a (Python) Programmer.
This is a more modest goal than the original, but it might be more accurate.

Allen B. Downey
Needham MA

Allen Downey is a Professor of Computer Science at the Franklin W. Olin College of
Engineering.



ix

I began my career teaching computer science in graduate school at the University of
Wisconsin, using Java. While my students were learning, I felt there was too much
syntax in the way of the core concepts of problem solving, and I found Java cumber-
some to teach in any way except focusing on Objects First. After a few discussions
with colleagues, I decided to move to Python, and began looking for textbook.

When I found Allen’s text online, I first noticed the brevity and focus, along with
constant reinforcement of good debugging techniques. And when I discovered that it
was open source, I jumped at using it in my CS1 course. I have struggled with using
texts before where the topic sequence does not match my preference, however, with
this text I was free to edit and rearrange to suit my needs.

The text was very well received by my students, who appreciated the constant small
inline examples, as well as the free price compared to textbooks for their other courses.
As of this summer (2009) I am revising the text to use Python 3.0, and will be using
this new version in the fall.

Mark Goadrich
Shreveport LA

Mark Goadrich is an Assistant Professor of Computer Science at Centenary College of
Louisiana and the Broyles Eminent Scholars Chair of Computational Mathematics.
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Chapter 1

The way of the program

The goal of this book is to teach you to think like a computer scientist. This way of
thinking combines some of the best features of mathematics, engineering, and natu-
ral science. Like mathematicians, computer scientists use formal languages to denote
ideas (specifically computations). Like engineers, they design things, assembling com-
ponents into systems and evaluating tradeoffs among alternatives. Like scientists, they
observe the behavior of complex systems, form hypotheses, and test predictions.

The single most important skill for a computer scientist is problem solving. Problem
solving means the ability to formulate problems, think creatively about solutions, and
express a solution clearly and accurately. As it turns out, the process of learning to
program is an excellent opportunity to practice problem-solving skills. That’s why this
chapter is called, “The way of the program.”

On one level, you will be learning to program, a useful skill by itself. On another level,
you will use programming as a means to an end. As we go along, that end will become
clearer.

1.1 The Python programming language
The programming language you will be learning is Python. Python is an example of a
high-level language; other high-level languages you might have heard of are C, C++,
Perl, and Java.

As you might infer from the name “high-level language,” there are also low-level
languages, sometimes referred to as “machine languages” or “assembly languages.”
Loosely speaking, computers can only execute programs written in low-level lan-
guages. So programs written in a high-level language have to be processed before
they can run. This extra processing takes some time, which is a small disadvantage of
high-level languages.
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But the advantages are enormous. First, it is much easier to program in a high-level
language. Programs written in a high-level language take less time to write, they are
shorter and easier to read, and they are more likely to be correct. Second, high-level
languages are portable, meaning that they can run on different kinds of computers with
few or no modifications. Low-level programs can run on only one kind of computer
and have to be rewritten to run on another.

Due to these advantages, almost all programs are written in high-level languages. Low-
level languages are used only for a few specialized applications.

Two kinds of programs process high-level languages into low-level languages: inter-
preters and compilers. An interpreter reads a high-level program and executes it,
meaning that it does what the program says. It processes the program a little at a time,
alternately reading lines and performing computations.

OUTPUTSOURCE

CODE
INTERPRETER

A compiler reads the program and translates it completely before the program starts
running. In this case, the high-level program is called the source code, and the trans-
lated program is called the object code or the executable. Once a program is compiled,
you can execute it repeatedly without further translation.

OUTPUT

CODE

OBJECT
EXECUTOR

CODE

SOURCE
COMPILER

Python is considered an interpreted language because Python programs are executed
by an interpreter. There are two ways to use the interpreter: interactive mode and script
mode. In interactive mode, you type Python programs and the interpreter prints the
result:

Python 3.0.1+ (r301:69556, Apr 15 2009, 17:25:52)
Type "help", "copyright", "credits" or "license" for more information.
>>> print(1 + 1)
2

The first two lines in this example are displayed by the interpreter when it starts up.
The third line starts with >>>, which is the prompt the interpreter uses to indicate that
it is ready. If you type print(1 + 1), the interpreter replies 2.

Alternatively, you can store code in a file and use the interpreter to execute the contents
of the file. Such a file is called a script. For example, you could use a text editor to
create a file named dinsdale.py with the following contents:
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print(1 + 1)

By convention, Python scripts have names that end with .py.

To execute the script, you have to tell the interpreter the name of the file. In a UNIX
command window, you would type python dinsdale.py. In other development en-
vironments, the details of executing scripts are different.

Working in interactive mode is convenient for testing small pieces of code because you
can type and execute them immediately. But for anything more than a few lines, you
should save your code as a script so you can modify and execute it in the future.

1.2 What is a program?
A program is a sequence of instructions that specifies how to perform a computation.
The computation might be something mathematical, such as solving a system of equa-
tions or finding the roots of a polynomial, but it can also be a symbolic computation,
such as searching and replacing text in a document or (strangely enough) compiling a
program.

The details look different in different languages, but a few basic instructions appear in
just about every language:

input: Get data from the keyboard, a file, or some other device.

output: Display data on the screen or send data to a file or other device.

math: Perform basic mathematical operations like addition and multiplication.

conditional execution: Check for certain conditions and execute the appropriate se-
quence of statements.

repetition: Perform some action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program you’ve ever used,
no matter how complicated, is made up of instructions that look pretty much like these.
So you can think of programming as the process of breaking a large, complex task into
smaller and smaller subtasks until the subtasks are simple enough to be performed with
one of these basic instructions.

1.3 Algorithms
An algorithm is a mechanical process for solving a category of problems.

It is not easy to define an algorithm. It might help to start with something that is
not an algorithm. When you learned to multiply single-digit numbers, you probably



6 Chapter 1. The way of the program

memorized the multiplication table. In effect, you memorized 100 specific solutions.
That kind of knowledge is not algorithmic.

But if you were “lazy,” you probably cheated by learning a few tricks. For example,
to find the product of n and 9, you can write n− 1 as the first digit and 10− n as the
second digit. This trick is a general solution for multiplying any single-digit number
by 9. That’s an algorithm!

Similarly, the techniques you learned for addition with carrying, subtraction with bor-
rowing, and long division are all algorithms. One of the characteristics of algorithms
is that they do not require any intelligence to carry out. They are mechanical processes
in which each step follows from the last according to a simple set of rules.

In my opinion, it is embarrassing that humans spend so much time in school learning
to execute algorithms that, quite literally, require no intelligence.

On the other hand, the process of designing algorithms is interesting, intellectually
challenging, and a central part of what we call programming.

Some of the things that people do naturally, without difficulty or conscious thought,
are the hardest to express algorithmically. Understanding natural language is a good
example. We all do it, but so far no one has been able to explain how we do it, at least
not in the form of an algorithm.

1.4 What is debugging?
Programming is error-prone. For whimsical reasons, programming errors are called
bugs and the process of tracking them down is called debugging.

Three kinds of errors can occur in a program: syntax errors, runtime errors, and seman-
tic errors. It is useful to distinguish between them in order to track them down more
quickly.

1.4.1 Syntax errors

Python can only execute a program if the syntax is correct; otherwise, the interpreter
displays an error message. Syntax refers to the structure of a program and the rules
about that structure. For example, in English, a sentence must begin with a capital
letter and end with a period. this sentence contains a syntax error. So does this one

For most readers, a few syntax errors are not a significant problem, which is why we
can read the poetry of e. e. cummings without spewing error messages. Python is not
so forgiving. If there is a single syntax error anywhere in your program, Python will
print an error message and quit, and you will not be able to run your program. During
the first few weeks of your programming career, you will probably spend a lot of time
tracking down syntax errors. As you gain experience, you will make fewer errors and
find them faster.
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1.4.2 Runtime errors

The second type of error is a runtime error, so called because the error does not appear
until after the program has started running. These errors are also called exceptions
because they usually indicate that something exceptional (and bad) has happened.

Runtime errors are rare in the simple programs you will see in the first few chapters, so
it might be a while before you encounter one.

1.4.3 Semantic errors

The third type of error is the semantic error. If there is a semantic error in your
program, it will run successfully, in the sense that the computer will not generate any
error messages, but it will not do the right thing. It will do something else. Specifically,
it will do what you told it to do.

The problem is that the program you wrote is not the program you wanted to write.
The meaning of the program (its semantics) is wrong. Identifying semantic errors can
be tricky because it requires you to work backward by looking at the output of the
program and trying to figure out what it is doing.

1.4.4 Experimental debugging

One of the most important skills you will acquire is debugging. Although it can be
frustrating, debugging is one of the most intellectually rich, challenging, and interesting
parts of programming.

In some ways, debugging is like detective work. You are confronted with clues, and
you have to infer the processes and events that led to the results you see.

Debugging is also like an experimental science. Once you have an idea about what is
going wrong, you modify your program and try again. If your hypothesis was correct,
then you can predict the result of the modification, and you take a step closer to a
working program. If your hypothesis was wrong, you have to come up with a new one.
As Sherlock Holmes pointed out, “When you have eliminated the impossible, whatever
remains, however improbable, must be the truth.” (A. Conan Doyle, The Sign of Four)

For some people, programming and debugging are the same thing. That is, program-
ming is the process of gradually debugging a program until it does what you want.
The idea is that you should start with a program that does something and make small
modifications, debugging them as you go, so that you always have a working program.

For example, Linux is an operating system that contains thousands of lines of code,
but it started out as a simple program Linus Torvalds used to explore the Intel 80386
chip. According to Larry Greenfield, “One of Linus’s earlier projects was a program
that would switch between printing AAAA and BBBB. This later evolved to Linux.”
(The Linux Users’ Guide Beta Version 1)
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Later chapters will make more suggestions about debugging and other programming
practices.

1.5 Formal and natural languages
Natural languages are the languages people speak, such as English, Spanish, and
French. They were not designed by people (although people try to impose some order
on them); they evolved naturally.

Formal languages are languages that are designed by people for specific applications.
For example, the notation that mathematicians use is a formal language that is partic-
ularly good at denoting relationships among numbers and symbols. Chemists use a
formal language to represent the chemical structure of molecules. And most impor-
tantly:

Programming languages are formal languages that have been de-
signed to express computations.

Formal languages tend to have strict rules about syntax. For example, 3+ 3 = 6 is a
syntactically correct mathematical statement, but 3+ = 3$6 is not. H2O is a syntacti-
cally correct chemical formula, but 2Zz is not.

Syntax rules come in two flavors, pertaining to tokens and structure. Tokens are the
basic elements of the language, such as words, numbers, and chemical elements. One
of the problems with 3+ = 3$6 is that $ is not a legal token in mathematics (at least
as far as I know). Similarly, 2Zz is not legal because there is no element with the
abbreviation Zz.

The second type of syntax error pertains to the structure of a statement; that is, the way
the tokens are arranged. The statement 3+= 3$6 is illegal because even though + and
= are legal tokens, you can’t have one right after the other. Similarly, in a chemical
formula the subscript comes after the element name, not before.
Exercise 1.1. Write a well-structured English sentence with invalid tokens in it. Then
write another sentence with all valid tokens but with invalid structure.

When you read a sentence in English or a statement in a formal language, you have to
figure out what the structure of the sentence is (although in a natural language you do
this subconsciously). This process is called parsing.

For example, when you hear the sentence, “The penny dropped,” you understand that
“the penny” is the subject and “dropped” is the predicate. Once you have parsed a
sentence, you can figure out what it means, or the semantics of the sentence. Assuming
that you know what a penny is and what it means to drop, you will understand the
general implication of this sentence.

Although formal and natural languages have many features in common—tokens, struc-
ture, syntax, and semantics—there are many differences:
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ambiguity: Natural languages are full of ambiguity, which people deal with by using
contextual clues and other information. Formal languages are designed to be
nearly or completely unambiguous, which means that any statement has exactly
one meaning, regardless of context.

redundancy: In order to make up for ambiguity and reduce misunderstandings, nat-
ural languages employ lots of redundancy. As a result, they are often verbose.
Formal languages are less redundant and more concise.

literalness: Natural languages are full of idiom and metaphor. If I say, “The penny
dropped,” there is probably no penny and nothing dropping1. Formal languages
mean exactly what they say.

People who grow up speaking a natural language—everyone—often have a hard time
adjusting to formal languages. In some ways, the difference between formal and natural
language is like the difference between poetry and prose, but more so:

Poetry: Words are used for their sounds as well as for their meaning, and the whole
poem together creates an effect or emotional response. Ambiguity is not only
common but often deliberate.

Prose: The literal meaning of words is more important, and the structure contributes
more meaning. Prose is more amenable to analysis than poetry but still often
ambiguous.

Programs: The meaning of a computer program is unambiguous and literal, and can
be understood entirely by analysis of the tokens and structure.

Here are some suggestions for reading programs (and other formal languages). First,
remember that formal languages are much more dense than natural languages, so it
takes longer to read them. Also, the structure is very important, so it is usually not a
good idea to read from top to bottom, left to right. Instead, learn to parse the program
in your head, identifying the tokens and interpreting the structure. Finally, the details
matter. Small errors in spelling and punctuation, which you can get away with in
natural languages, can make a big difference in a formal language.

1.6 The first program
Traditionally, the first program you write in a new language is called “Hello, World!”
because all it does is display the words, “Hello, World!” In Python, it looks like this:

print('Hello, World!')

This is an example of the print function, which doesn’t actually print anything on
paper. It displays a value on the screen. In this case, the result is the words

1This idiom means that someone realized something after a period of confusion.
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Hello, World!

The quotation marks in the program mark the beginning and end of the text to be
displayed; they don’t appear in the result.

Some people judge the quality of a programming language by the simplicity of the
“Hello, World!” program. By this standard, Python does about as well as possible.

1.7 Debugging

It is a good idea to read this book in front of a computer so you can try out the examples
as you go. You can run most of the examples in interactive mode, but if you put the
code into a script, it is easier to try out variations.

Whenever you are experimenting with a new feature, you should try to make mistakes.
For example, in the “Hello, world!” program, what happens if you leave out one of the
quotation marks? What if you leave out both? What if you leave out the parenthesis?
What if you spell print wrong?

This kind of experiment helps you remember what you read; it also helps with debug-
ging, because you get to know what the error messages mean. And that brings us to the
First Theorem of Debugging:

It is better to make mistakes now and on purpose than later and acciden-
tally.

Learning to debug can be frustrating, but it is one of the most important parts of think-
ing like a computer scientist. At the end of each chapter there is a debugging section,
like this one, with my thoughts (and theorems) of debugging. I hope they help!

1.8 Glossary
problem solving: The process of formulating a problem, finding a solution, and ex-

pressing the solution.

high-level language: A programming language like Python that is designed to be easy
for humans to read and write.

low-level language: A programming language that is designed to be easy for a com-
puter to execute; also called “machine language” or “assembly language.”

portability: A property of a program that can run on more than one kind of computer.

interpret: To execute a program in a high-level language by translating it one line at
a time.
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compile: To translate a program written in a high-level language into a low-level lan-
guage all at once, in preparation for later execution.

source code: A program in a high-level language before being compiled.

object code: The output of the compiler after it translates the program.

executable: Another name for object code that is ready to be executed.

prompt: Characters displayed by the interpreter to indicate that it is ready to take input
from the user.

script: A program stored in a file (usually one that will be interpreted).

program: A set of instructions that specifies a computation.

algorithm: A general process for solving a category of problems.

bug: An error in a program.

debugging: The process of finding and removing any of the three kinds of program-
ming errors.

syntax: The structure of a program.

syntax error: An error in a program that makes it impossible to parse (and therefore
impossible to interpret).

exception: An error that is detected while the program is running.

semantics: The meaning of a program.

semantic error: An error in a program that makes it do something other than what the
programmer intended.

natural language: Any one of the languages that people speak that evolved naturally.

formal language: Any one of the languages that people have designed for specific
purposes, such as representing mathematical ideas or computer programs; all
programming languages are formal languages.

token: One of the basic elements of the syntactic structure of a program, analogous to
a word in a natural language.

parse: To examine a program and analyze the syntactic structure.

print function: A function that causes the Python interpreter to display a value on the
screen.
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1.9 Exercises
Exercise 1.2. Use a web browser to go to http://python.org. This page con-
tains a lot of information about Python, pointers to Python-related pages, and it gives
you the ability to search the Python documentation.

For example, if you enter print in the search window, the first link that appears is the
documentation of the print statement. At this point, not all of it will make sense to
you, but it is good to know where it is!
Exercise 1.3. Start the Python interpreter and type help() to start the online help
utility. Alternatively, you can type help(print) to get information about a particular
topic, in this case the print statement. If this example doesn’t work, you may need to
install additional Python documentation or set an environment variable; unfortunately,
the details depend on your operating system and version of Python.



Chapter 2

Variables, expressions and
statements

2.1 Values and classes

A value is one of the basic things a program works with, like a letter or a number. The
values we have seen so far are 1, 2, and ’Hello, World!’.

These values belong to different types of classes: 2 is an integer, and ’Hello,
World!’ is a string, so-called because it contains a “string” of letters. You (and
the interpreter) can identify strings because they are enclosed in quotation marks.

The print function also works for integers.

>>> print(4)
4

If you are not sure what class a value has, the interpreter can tell you.

>>> type('Hello, World!')
<class 'str'>
>>> type(17)
<class 'int'>

Not surprisingly, strings belong to the class str and integers belong to the class int.
Less obviously, numbers with a decimal point belong to a class called float, because
these numbers are represented in a format called floating-point.

>>> type(3.2)
<class 'float'>
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What about values like ’17’ and ’3.2’? They look like numbers, but they are in
quotation marks like strings.

>>> type('17')
<class 'str'>
>>> type('3.2')
<class 'str'>

They’re strings.

When you type a large integer, you might be tempted to use commas between groups
of three digits, as in 1,000,000. This is not a legal integer in Python, but it is legal:

>>> print(1,000,000)
1 0 0

Well, that’s not what we expected at all! Python interprets 1,000,000 as a comma-
separated sequence of integers which it prints with spaces between.

This is the first example we have seen of a semantic error: the code runs without
producing an error message, but it doesn’t do the “right” thing.

2.2 Variables
One of the most powerful features of a programming language is the ability to manip-
ulate variables. A variable is a name that refers to a value.

The assignment statement creates new variables and gives them values:

>>> message = 'And now for something completely different'
>>> n = 17
>>> pi = 3.1415926535897931

This example makes three assignments. The first assigns a string to a new variable
named message; the second gives the integer 17 to n; the third assigns the (approxi-
mate) value of π to pi.

A common way to represent variables on paper is to write the name with an arrow
pointing to the variable’s value. This kind of figure is called a state diagram because
it shows what state each of the variables is in (think of it as the variable’s state of mind).
This diagram shows the result of the assignment statements:

message

n

pi

17

’And now for something completely different’

3.1415926535897931

The print function displays the value of a variable:
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>>> print(n)
17
>>> print(pi)
3.14159265359

The type of a variable is the type of the value it refers to.

>>> type(message)
<class 'str'>
>>> type(n)
<class 'int'>
>>> type(pi)
<class 'float'>

2.3 Variable names and keywords
Programmers generally choose names for their variables that are meaningful—they
document what the variable is used for.

Variable names can be arbitrarily long. They can contain both letters and numbers,
but they have to begin with a letter. Although it is legal to use uppercase letters, by
convention we don’t. If you do, remember that case matters. Bruce and bruce are
different variables.

The underscore character ( ) can appear in a name. It is often used in names with
multiple words, such as my name or airspeed of unladen swallow.

If you give a variable an illegal name, you get a syntax error:

>>> 76trombones = 'big parade'
SyntaxError: invalid syntax
>>> more@ = 1000000
SyntaxError: invalid syntax
>>> class = 'Advanced Theoretical Herpetology'
SyntaxError: invalid syntax

76trombones is illegal because it does not begin with a letter. more@ is illegal because
it contains an illegal character, @. But what’s wrong with class?

It turns out that class is one of Python’s keywords. The interpreter uses keywords to
recognize the structure of the program, and they cannot be used as variable names.

Python has 31 keywords:

and del from not while
as elif global or with
assert else if pass yield
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break except import print
class exec in raise
continue finally is return
def for lambda try

You might want to keep this list handy. If the interpreter complains about one of your
variable names and you don’t know why, see if it is on this list.

2.4 Statements
A statement is an instruction that the Python interpreter can execute. We have seen two
kinds of statements: print and assignment.

When you type a statement on the command line, Python executes it and displays the
result, if there is one.

A script usually contains a sequence of statements. If there is more than one statement,
the results appear one at a time as the statements execute.

For example, the script

print(1)
x = 2
print(x)

produces the output

1
2

The assignment statement produces no output itself.

2.5 Operators and operands
Operators are special symbols that represent computations like addition and multipli-
cation. The values the operator is applied to are called operands.

The following examples demonstrate the arithmetic operators:

20+32 hour-1 hour*60+minute minute/60 5**2 (5+9)*(15-7)

The symbols +, -, and /, and the use of parenthesis for grouping, mean in Python what
they mean in mathematics. The asterisk (*) is the symbol for multiplication, and ** is
the symbol for exponentiation.

When a variable name appears in the place of an operand, it is replaced with its value
before the operation is performed.

Addition, subtraction, multiplication, division and exponentiation all do what you ex-
pect.
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2.6 Floor Division and Modulus operator
The operators above have some interesting behavior in conjunction with integers.

>>> type(4 + 2)
<class 'int'>
>>> type(4 - 2)
<class 'int'>
>>> type(4 * 2)
<class 'int'>
>>> type(4 / 2)
<class 'float'>

Division will always return a floating-point number, even when the operands are inte-
gers. If we want an integer back from division, we will have to perform floor division
with the symbol // . Floor division chops off the fraction part, so in this example it
returns 2.

>>> 4 / 2
2.0
>>> 4 // 2
2

The modulus operator works on integers and yields the remainder when the first
operand is divided by the second. In Python, the modulus operator is a percent sign
(%). The syntax is the same as for other operators:

>>> quotient = 7 // 3
>>> print(quotient)
2
>>> remainder = 7 % 3
>>> print(remainder)
1

So 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly useful. For example, you can check
whether one number is divisible by another—if x % y is zero, then x is divisible by y.

Also, you can extract the right-most digit or digits from a number. For example, x %
10 yields the right-most digit of x (in base 10). Similarly x % 100 yields the last two
digits.

2.7 Expressions
An expression is a combination of values, variables, and operators. If you type an
expression on the command line, the interpreter evaluates it and displays the result:
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>>> 1 + 1
2

Although expressions can contain values, variables, and operators, not every expression
contains all of these elements. A value all by itself is considered an expression, and so
is a variable.

>>> 17
17
>>> x
2

In a script, an expression all by itself is a legal statement, but it doesn’t do anything.
The following script produces no output at all:

17
3.2
'Hello, World!'
1 + 1

If you want the script to display the values of these expressions, you have to use print
statements.

2.8 Order of operations

When more than one operator appears in an expression, the order of evaluation de-
pends on the rules of precedence. For mathematical operators, Python follows the
mathematical rules. The acronym PEMDAS is a useful way to remember them:

• Parentheses have the highest precedence and can be used to force an expression
to evaluate in the order you want. Since expressions in parentheses are evaluated
first, 2 * (3-1) is 4, and (1+1)**(5-2) is 8. You can also use parentheses to
make an expression easier to read, as in (minute * 100) / 60, even though it
doesn’t change the result.

• Exponentiation has the next highest precedence, so 2**1+1 is 3 and not 4, and
3*1**3 is 3 and not 27.

• Multiplication and Division (including Modulus) have the same precedence,
which is higher than Addition and Subtraction, which also have the same prece-
dence. So 2*3-1 is 5, not 4, and 6+4/2 is 8, not 5.

• Operators with the same precedence are evaluated from left to right. So in the
expression degrees / 2 * pi, the division happens first and the result is mul-
tiplied by pi. If you meant to divide by 2π, you should have used parentheses.
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2.9 Comments

As programs get bigger and more complicated, they get more difficult to read. Formal
languages are dense, and it is often difficult to look at a piece of code and figure out
what it is doing, or why.

For this reason, it is a good idea to add notes to your programs to explain in natural
language what the program is doing. These notes are called comments, and they are
marked with the # symbol:

# compute the percentage of the hour that has elapsed
percentage = (minute * 100) / 60

In this case, the comment appears on a line by itself. You can also put comments at the
end of a line:

percentage = (minute * 100) / 60 # percentage of an hour

Everything from the # to the end of the line is ignored—it has no effect on the program.

Comments are most useful when they document non-obvious features of the code. It is
reasonable to assume that the reader can figure out what the code does; it is much more
useful to explain why.

This comment is redundant with the code and useless:

v = 5 # assign 5 to v

This comment contains useful information that is not in the code:

v = 5 # velocity in meters/second.

Good variable names can reduce the need for comments, but long names can make
complex expressions hard to read, so there is a tradeoff.

2.10 Debugging

At this point the syntax error you are most likely to make is an illegal variable name,
like class and yield (which are keywords) or odd˜job and US$ which contain illegal
characters.

If you put a space in a variable name, Python thinks it is two operands without an
operator:

>>> bad name = 5
SyntaxError: invalid syntax
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For syntax errors, the error messages don’t help much. The most common messages are
SyntaxError: invalid syntax and SyntaxError: invalid token, neither of
which is very informative.

The run-time error you are most likely to make is a “use before def;” that is, trying to
use a variable before you have assigned a value. This can happen if you spell a variable
name wrong:

>>> principal = 327.68
>>> interest = principle * rate
NameError: name 'principle' is not defined

Variables names are case sensitive, so Bob is not the same as bob.

At this point the most likely cause of a semantic error is the order of operations. For
example, to evaluate 1

2a , you might be tempted to write

>>> 1.0 / 2.0 * a

But the division happens first, so you would get a/2, which is not the same thing!
Unfortunately, there is no way for Python to know what you intended to write, so in
this case you don’t get an error message; you just get the wrong answer.

And that brings us to the Second Theorem of Debugging:

The only thing worse than getting an error message is not getting an error
message.

2.11 Glossary
value: One of the basic units of data, like a number or string, that a program manipu-

lates.

type: A function that tells us the category of a value. The classes we have seen so far
are integers (class int), floating-point numbers (class float), and strings (class
str).

integer: A class that represents whole numbers.

floating-point: A class that represents numbers with fractional parts.

string: A class that represents sequences of characters.

variable: A name that refers to a value.

statement: A section of code that represents a command or action. So far, the state-
ments we have seen are assignments.

assignment: A statement that assigns a value to a variable.
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state diagram: A graphical representation of a set of variables and the values they
refer to.

keyword: A reserved word that is used by the compiler to parse a program; you cannot
use keywords like if, def, and while as variable names.

operator: A special symbol that represents a simple computation like addition, multi-
plication, or string concatenation.

operand: One of the values on which an operator operates.

floor division: The operation that divides two numbers and chops off the fraction part.

modulus operator: An operator, denoted with a percent sign (%), that works on inte-
gers and yields the remainder when one number is divided by another.

expression: A combination of variables, operators, and values that represents a single
result value.

evaluate: To simplify an expression by performing the operations in order to yield a
single value.

rules of precedence: The set of rules governing the order in which expressions in-
volving multiple operators and operands are evaluated.

comment: Information in a program that is meant for other programmers (or anyone
reading the source code) and has no effect on the execution of the program.

2.12 Exercises
Exercise 2.1. Assume that we execute the following assignment statements:

width = 17
height = 12.0
delimiter = '.'

For each of the following expressions, write the value of the expression and the class
(of the value of the expression).

1. width/2

2. height/3.0

3. width/2.0

4. 1 + 2 * 5

5. delimiter * 5

Exercise 2.2. Practice using the Python interpreter as a calculator:
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• If you ran 10 kilometers in 45 minutes 30 seconds, what was your average pace
in minutes per mile? What was your average speed in miles per hour? (Hint:
there are 1.61 kilometers in a mile).



Chapter 3

Using Functions

3.1 Function calls

In the context of programming, a function is a named sequence of statements that
performs a computation. When you define a function, you specify the name and the
sequence of statements. Later, you can “call” the function by name. We have already
seen one example of a function call:

>>> type('32')
<class 'str'>

The name of the function is type. The expression in parentheses is called the argu-
ment of the function. The result, for this function, is the class of the argument, which
is a string.

It is common to say that a function “takes” an argument and “returns” a result. The
result is called the return value.

When you call a function in interactive mode, the interpreter displays the return value,
but in a script a function call, all by itself, doesn’t display anything. To see the result,
you have to print it:

print(type('32'))

Or assign the return value to a variable, which you can print (or use for some other
purpose) later.

stereo = type('32')
print(stereo)
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3.2 Type conversion functions
Python provides built-in functions that convert values from one class to another. The
int function takes any value and converts it to an integer if it can or complains other-
wise:

>>> int('32')
32
>>> int('Hello')
ValueError: invalid literal for int(): Hello

int can convert floating-point values to integers, but it doesn’t round off; it chops off
the fraction part:

>>> int(3.99999)
3
>>> int(-2.3)
-2

float converts integers and strings to floating-point numbers:

>>> float(32)
32.0
>>> float('3.14159')
3.14159

Finally, str converts its argument to a string:

>>> str(32)
'32'
>>> str(3.14149)
'3.14149'

3.3 Keyboard input
The programs we have written so far are a bit rude in the sense that they accept no input
from the user. They just do the same thing every time.

Python provides a built-in function called input that gets input from the keyboard.
When this function is called, the program stops and waits for the user to type some-
thing. When the user presses Return or Enter, the program resumes and input returns
what the user typed as a string.

>>> inp = input()
What are you waiting for?
>>> print(input)
What are you waiting for?
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Before calling input, it is a good idea to print a prompt telling the user what to input.
input takes a prompt as an argument:

>>> name = input('What...is your name?\n')
What...is your name?
Arthur, King of the Britons!
>>> print(name)
Arthur, King of the Britons!

The sequence \n at the end of the prompt represents a newline, which is a special char-
acter that causes a line break. That’s why the user’s input appears below the prompt.

If you expect the user to type an integer, you can try to convert the return value to int:

>>> prompt = 'What...is the airspeed velocity of an unladen swallow?\n'
>>> speed = input(prompt)
What...is the airspeed velocity of an unladen swallow?
17
>>> int(speed)
17

But if the user types something other than a string of digits, you get an exception:

>>> speed = input(prompt)
What...is the airspeed velocity of an unladen swallow?
What do you mean, an African or a European swallow?
>>> int(speed)
ValueError: invalid literal for int()

We will see how to handle this kind of error later.

3.4 Math functions
Python has a math module that provides most of the familiar mathematical functions.
A module is a file that contains a collection of related functions.

Before we can use the module, we have to import it:

>>> import math

This statement creates a module object named math. If you print the module object,
you get some information about it:

>>> print(math)
<module 'math' from '/usr/lib/python3.0/lib-dynload/mathmodule.so'>

The module object contains the functions and variables defined in the module. To
access one of the functions, you have to specify the name of the module and the name
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of the function, separated by a dot (also known as a period). This format is called dot
notation.

>>> ratio = signal_power / noise_power
>>> decibels = 10 * math.log10(ratio)

>>> radians = 0.7
>>> height = math.sin(radians)

The first example computes the logarithm base 10 of the signal-to-noise ratio. The
math module also provides a function called log that computes logarithms base e.

The second example finds the sine of radians. The name of the variable is a hint that
sin and the other trigonometric functions (cos, tan, etc.) take arguments in radians.
To convert from degrees to radians, divide by 360 and multiply by 2π:

>>> degrees = 45
>>> radians = degrees / 360.0 * 2 * math.pi
>>> math.sin(radians)
0.707106781187

The expression math.pi gets the variable pi from the math module. Conveniently, the
value of this variable is an approximation of π, accurate to about 15 digits.

If you know your trigonometry, you can check the previous result by comparing it to
the square root of two divided by two:

>>> math.sqrt(2) / 2.0
0.707106781187

3.5 Composition
So far, we have looked at the elements of a program—variables, expressions, and
statements—in isolation, without talking about how to combine them.

One of the most useful features of programming languages is their ability to take small
building blocks and compose them. For example, the argument of a function can be
any kind of expression, including arithmetic operators:

x = math.sin(degrees / 360.0 * 2 * math.pi)

And even function calls:

x = math.exp(math.log(x+1))

Almost anywhere you can put a value, you can put an arbitrary expression, with one
exception: the left side of an assignment statement has to be a variable name. An
expression on the left side is a syntax error.
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>>> minutes = hours * 60 # right
>>> hours * 60 = minutes # wrong!
SyntaxError: can't assign to operator

3.6 Debugging
If you are using a text editor to write your scripts, you might run into problems with
spaces and tabs. The best way to avoid these problems is to use spaces exclusively (no
tabs). Most text editors that know about Python do this by default, but some don’t.

Tabs and spaces are usually invisible, which makes them hard to debug, so try to find
an editor that manages indentation for you.

Also, don’t forget to save your program before you run it. Some development environ-
ments do this automatically, but some don’t. In that case the program you are looking
at in the text editor is not the same as the program you are running (the one on disk).

Debugging can take a long time if you keep running the same, incorrect, program over
and over! And that brings me to the Third Theorem of Debugging:

Make sure that the code you are looking at is the code you are running.

If you’re not sure, put something like print(’hello!’) at the beginning of the pro-
gram and run it again. If you don’t see ’hello!’, you’re not running the right program!

3.7 Glossary
function: A named sequence of statements that performs some useful operation.

Functions may or may not take arguments and may or may not produce a re-
sult.

module: A file that contains a collection of related functions and other definitions.

import statement: A statement that reads a module file and creates a module object.

module object: A value created by an import statement that provides access to the
values defined in a module.

dot notation: The syntax for calling a function in another module by specifying the
module name followed by a dot (period) and the function name.

composition: Using an expression as part of a larger expression, or a statement as part
of a larger statement.

3.8 Exercises
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Part II

Decisions, Detours and Data
Structures





Chapter 4

Conditionals

4.1 Boolean expressions
A boolean expression is an expression that is either true or false. The following ex-
amples use the operator ==, which compares two operands and produces True if they
are equal and False otherwise:

>>> 5 == 5
True
>>> 5 == 6
False

True and False are special values that belong to the class bool; they are not strings:

>>> type(True)
<class 'bool'>
>>> type(False)
<class 'bool'>

The == operator is one of the comparison operators; the others are:

x != y # x is not equal to y
x > y # x is greater than y
x < y # x is less than y
x >= y # x is greater than or equal to y
x <= y # x is less than or equal to y

Although these operations are probably familiar to you, the Python symbols are differ-
ent from the mathematical symbols. A common error is to use a single equal sign (=)
instead of a double equal sign (==). Remember that = is an assignment operator and ==
is a comparison operator. There is no such thing as =< or =>.
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4.2 Logical operators

There are three logical operators: and, or, and not. The semantics (meaning) of these
operators is similar to their meaning in English. For example, x > 0 and x < 10 is
true only if x is greater than 0 and less than 10.

n%2 == 0 or n%3 == 0 is true if either of the conditions is true, that is, if the number
is divisible by 2 or 3.

Finally, the not operator negates a boolean expression, so not (x > y) is true if x >
y is false, that is, if x is less than or equal to y.

Strictly speaking, the operands of the logical operators should be boolean expressions,
but Python is not very strict. Any nonzero number is interpreted as “True.”

>>> 17 and True
True

This flexibility can be useful, but there are some subtleties to it that might be confusing.
You might want to avoid it (unless you know what you are doing).

4.3 Conditional execution

In order to write useful programs, we almost always need the ability to check conditions
and change the behavior of the program accordingly. Conditional statements give us
this ability. The simplest form is the if statement:

if x > 0:
print('x is positive')

The boolean expression after the if statement is called the condition. If it is true, then
the indented statement gets executed. If not, nothing happens.

if statements have a header followed by an indented block. Statements like this are
called compound statements.

There is no limit on the number of statements that can appear in the body, but there has
to be at least one. Occasionally, it is useful to have a body with no statements (usually
as a place keeper for code you haven’t written yet). In that case, you can use the pass
statement, which does nothing.

if x < 0:
pass # need to handle negative values!
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4.4 Alternative execution

A second form of the if statement is alternative execution, in which there are two
possibilities and the condition determines which one gets executed. The syntax looks
like this:

if x%2 == 0:
print('x is even')

else:
print('x is odd')

If the remainder when x is divided by 2 is 0, then we know that x is even, and the
program displays a message to that effect. If the condition is false, the second set of
statements is executed. Since the condition must be true or false, exactly one of the
alternatives will be executed. The alternatives are called branches, because they are
branches in the flow of execution.

4.5 Chained conditionals

Sometimes there are more than two possibilities and we need more than two branches.
One way to express a computation like that is a chained conditional:

if x < y:
print('x is less than y')

elif x > y:
print('x is greater than y')

else:
print('x and y are equal')

elif is an abbreviation of “else if.” Again, exactly one branch will be executed. There
is no limit on the number of elif statements. If there is an else clause, it has to be at
the end, but there doesn’t have to be one.

if choice == 1:
function1()

elif choice == 2:
function2()

elif choice == 3:
function3()

Each condition is checked in order. If the first is false, the next is checked, and so on. If
one of them is true, the corresponding branch executes, and the statement ends. Even
if more than one condition is true, only the first true branch executes.
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4.6 Nested conditionals
One conditional can also be nested within another. We could have written the tri-
chotomy example like this:

if x == y:
print('x and y are equal')

else:
if x < y:

print('x is less than y')
else:

print('x is greater than y')

The outer conditional contains two branches. The first branch contains a simple state-
ment. The second branch contains another if statement, which has two branches of its
own. Those two branches are both simple statements, although they could have been
conditional statements as well.

Although the indentation of the statements makes the structure apparent, nested condi-
tionals become difficult to read very quickly. In general, it is a good idea to avoid them
when you can.

Logical operators often provide a way to simplify nested conditional statements. For
example, we can rewrite the following code using a single conditional:

if 0 < x:
if x < 10:

print('x is a positive single digit.')

The print statement is executed only if we make it past both conditionals, so we can
get the same effect with the and operator:

if 0 < x and x < 10:
print('x is a positive single digit.')

4.7 String comparison
The comparison operators work on strings. To see if two strings are equal:

if word == 'banana':
print('Yes, we have no bananas!')

Other comparison operations are useful for putting words in alphabetical order:

if word < 'banana':
print('Your word,' + word + ', comes before banana.')

elif word > 'banana':



4.8. Random numbers 35

print('Your word,' + word + ', comes after banana.')
else:

print('Yes, we have no bananas!')

Python does not handle uppercase and lowercase letters the same way that people do.
All the uppercase letters come before all the lowercase letters, so:

Your word, Zebra, comes before banana.

A common way to address this problem is to convert strings to a standard format, such
as all lowercase, before performing the comparison. The more difficult problem is
making the program realize that zebras are not fruit.

4.8 Random numbers

Most computer programs do the same thing every time they execute, given the same
inputs, so they are said to be deterministic. Determinism is usually a good thing, since
we expect the same calculation to yield the same result. For some applications, though,
we want the computer to be unpredictable. Games are an obvious example, but there
are more.

Making a program truly nondeterministic turns out to be not so easy, but there are ways
to make it at least seem nondeterministic. One of them is to use algorithms that generate
pseudorandom numbers. Pseudorandom numbers are not truly random because they
are generated by a deterministic computation, but just by looking at the numbers it is
all but impossible to distinguish them from random.

The random module provides functions that generate pseudorandom numbers (which I
will simply call “random” from here on).

The function random returns a random float between 0.0 and 1.0 (including 0.0 but not
1.0). Each time you call random, you get the next number in a long series. We can use
this to simulate flipping a coin with a 50% probability of Heads and a 50% probability
of Tails:

import random

x = random.random()
if x > 0.5:

print('Heads')
else:

print('Tails')

The function randint takes parameters low and high and returns an integer between
low and high (including both).
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>>> random.randint(5, 10)
5
>>> random.randint(5, 10)
9

The random module also provides functions to generate random values from continu-
ous distributions including Gaussian, exponential, gamma, and a few more.

4.9 Debugging

The traceback Python displays when an error occurs contains a lot of information, but
it can be overwhelming, especially when there are many frames on the stack. The most
useful pieces are usually:

• what kind of error it was, and

• where it occurred.

Syntax errors are usually easy to find, but there are a few gotchas. Whitespace errors
can be tricky because spaces and tabs are invisible and we are used to ignoring them.

>>> x = 5
>>> y = 6

File "<stdin>", line 1
y = 6
ˆ

SyntaxError: invalid syntax

In this example, the problem is that the second line is indented by one space. But the er-
ror message points to y, which is misleading. In general, error messages indicate where
the error was discovered, but the actual error might be earlier in the code, sometimes
on a previous line.

And that brings me to the Fourth Theorem of Debugging:

Error messages tell you where the problem was discovered, but that is
often not where it was caused.

4.10 Glossary
boolean expression: An expression whose value is either True or False.

comparison operator: One of the operators that compares its operands: ==, !=, >, <,
>=, and <=.
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logical operator: One of the operators that combines boolean expressions: and, or,
and not.

conditional statement: A statement that controls the flow of execution depending on
some condition.

condition: The boolean expression in a conditional statement that determines which
branch is executed.

compound statement: A statement that consists of a header and a body. The header
ends with a colon (:). The body is indented relative to the header.

body: The sequence of statements within a compound statement.

branch: One of the alternative sequences of statements in a conditional statement.

chained conditional: A conditional statement with a series of alternative branches.

4.11 Exercises
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Chapter 5

Writing functions

5.1 Adding new functions
So far, we have only been using the functions that come with Python, but it is also
possible to add new functions. A function definition specifies the name of a new
function and the sequence of statements that execute when the function is called.

Here is an example:

def print_lyrics():
print("I'm a lumberjack, and I'm okay.")
print("I sleep all night and I work all day.")

def is a keyword that indicates that this is a function definition. The name of the
function is print lyrics. The rules for function names are the same as for variable
names: letters, numbers and some punctuation marks are legal, but the first character
can’t be a number. You can’t use a keyword as the name of a function, and you should
avoid having a variable and a function with the same name.

The empty parentheses after the name indicate that this function doesn’t take any argu-
ments.

The first line of the function definition is called the header; the rest is called the body.
The header has to end with a colon and the body has to be indented. By convention,
the indentation is always four spaces. The body can contain any number of statements.

The strings in the print functions are enclosed in double quotes. Single quotes and
double quotes do the same thing. Most people use single quotes except in cases like
this where a single quote (which is also an apostrophe) appears in the string.

If you type a function definition in interactive mode, the interpreter prints ellipses (...)
to let you know that the definition isn’t complete:
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>>> def print_lyrics():
... print("I'm a lumberjack, and I'm okay.")
... print("I sleep all night and I work all day.")
...

To end the function, you have to enter an empty line (this is not necessary in a script).

Defining a function creates a variable with the same name.

>>> print(print_lyrics)
<function print_lyrics at 0xb7e99e9c>
>>> print(type(print_lyrics))
<class 'function'>

The value of print lyrics is a function object, which has class function.

The syntax for calling the new function is the same as for built-in functions:

>>> print_lyrics()
I'm a lumberjack, and I'm okay.
I sleep all night and I work all day.

Once you have defined a function, you can use it inside another function. For example,
to repeat the previous refrain, we could write a function called repeat lyrics:

def repeat_lyrics():
print_lyrics()
print_lyrics()

And then call repeat lyrics:

>>> repeat_lyrics()
I'm a lumberjack, and I'm okay.
I sleep all night and I work all day.
I'm a lumberjack, and I'm okay.
I sleep all night and I work all day.

But that’s not really how the song goes.

5.2 Definitions and uses
Pulling together the code fragments from the previous section, the whole program looks
like this:

def print_lyrics():
print("I'm a lumberjack, and I'm okay.")
print("I sleep all night and I work all day.")
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def repeat_lyrics():
print_lyrics()
print_lyrics()

repeat_lyrics()

This program contains two function definitions: print lyrics and repeat lyrics.
Function definitions get executed just like other statements, but the effect is to create
the new function. The statements inside the function do not get executed until the
function is called, and the function definition generates no output.

As you might expect, you have to create a function before you can execute it. In other
words, the function definition has to be executed before the first time it is called.
Exercise 5.1. Move the last line of this program to the top, so the function call appears
before the definitions. Run the program and see what error message you get.
Exercise 5.2. Move the function call back to the bottom and move the definition of
print lyrics after the definition of repeat lyrics. What happens when you run
this program?

5.3 Flow of execution

In order to ensure that a function is defined before its first use, you have to know the
order in which statements are executed, which is called the flow of execution.

Execution always begins at the first statement of the program. Statements are executed
one at a time, in order from top to bottom.

Function definitions do not alter the flow of execution of the program, but remember
that statements inside the function are not executed until the function is called.

A function call is like a detour in the flow of execution. Instead of going to the next
statement, the flow jumps to the body of the function, executes all the statements there,
and then comes back to pick up where it left off.

That sounds simple enough, until you remember that one function can call another.
While in the middle of one function, the program might have to execute the statements
in another function. But while executing that new function, the program might have to
execute yet another function!

Fortunately, Python is adept at keeping track of where it is, so each time a function
completes, the program picks up where it left off in the function that called it. When it
gets to the end of the program, it terminates.

What’s the moral of this sordid tale? When you read a program, you don’t always want
to read from top to bottom. Sometimes it makes more sense if you follow the flow of
execution.
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5.4 Why functions?
It may not be clear why it is worth the trouble to divide a program into functions. There
are a lot of reasons; here are a few:

• Creating a new function gives you an opportunity to name a group of statements,
which makes your program easier to read and debug.

• Functions can make a program smaller by eliminating repetitive code. Later, if
you make a change, you only have to make it in one place.

• Dividing a long program into functions allows you to debug the parts one at a
time and then assemble them into a working whole.

• Well-designed functions are often useful for many programs. Once you write
and debug one, you can reuse it.

5.5 Parameters and arguments
Some of the built-in functions you have used require arguments. For example, when
you call math.sin you pass a number (in radians) as an argument. Some functions
take more than one argument; math.pow takes two, the base and the exponent.

Inside the function, the arguments are assigned to variables called parameters. Here
is an example of a user-defined function that takes an argument:

def print_twice(bruce):
print(bruce)
print(bruce)

This function assigns the argument to a parameter named bruce. When the function is
called, it prints the value of the parameter, whatever it is, twice.

This function works with any value that can be printed.

>>> print_twice('Spam')
Spam
Spam
>>> print_twice(17)
17
17
>>> print_twice(math.pi)
3.14159265359
3.14159265359

The same rules of composition that apply to built-in functions also apply to user-defined
functions, so we can use any kind of expression as an argument for print twice:
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>>> print_twice('Spam '*4)
Spam Spam Spam Spam
Spam Spam Spam Spam
>>> print_twice(math.cos(math.pi))
-1.0
-1.0

The argument is evaluated before the function is called, so in the examples the expres-
sions ’Spam ’*4 and math.cos(math.pi) are only evaluated once.

You can also use a variable as an argument:

>>> michael = 'Eric, the half a bee.'
>>> print_twice(michael)
Eric, the half a bee.
Eric, the half a bee.

The name of the variable we pass as an argument (michael) has nothing to do with the
name of the parameter (bruce). It doesn’t matter what the value was called back home
(in the caller); here in print twice, we call everybody bruce.

5.6 Variables and parameters are local
When you create a variable inside a function, it is local, which means that it only exists
inside the function. For example:

def cat_twice(part1, part2):
cat = part1 + part2
print_twice(cat)

This function takes two arguments, concatenates them, and prints the result twice. Here
is an example that uses it:

>>> line1 = 'Bing tiddle '
>>> line2 = 'tiddle bang.'
>>> cat_twice(line1, line2)
Bing tiddle tiddle bang.
Bing tiddle tiddle bang.

When cat twice terminates, the variable cat is destroyed. If we try to print it, we get
an exception:

>>> print(cat)
NameError: name 'cat' is not defined

Parameters are also local. For example, outside print twice, there is no such thing as
bruce.
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5.7 Stack diagrams

To keep track of which variables can be used where, it is sometimes useful to draw a
stack diagram. Like state diagrams, stack diagrams show the value of each variable,
but they also show the function each variable belongs to.

Each function is represented by a frame. A frame is a box with the name of a function
beside it and the parameters and variables of the function inside it. The stack diagram
for the previous example looks like this:

line1

line2 ’tiddle bang.’

part1

part2

cat

bruce

’Bing tiddle ’

’Bing tiddle ’

’tiddle bang.’

’Bing tiddle tiddle bang.’

’Bing tiddle tiddle bang.’

__main__

cat_twice

print_twice

The frames are arranged in a stack that indicates which function called which, and
so on. In this example, print twice was called by cat twice, and cat twice was
called by main , which is a special name for the topmost frame. When you create a
variable outside of any function, it belongs to main .

Each parameter refers to the same value as its corresponding argument. So, part1 has
the same value as line1, part2 has the same value as line2, and bruce has the same
value as cat.

If an error occurs during a function call, Python prints the name of the function, and
the name of the function that called it, and the name of the function that called that, all
the way back to main .

For example, if you try to access cat from within print twice, you get a NameError:

Traceback (innermost last):
File "test.py", line 13, in __main__

cat_and_print_twice(line1, line2)
File "test.py", line 5, in cat_and_print_twice

print_twice(cat)
File "test.py", line 9, in print_twice

print(cat)
NameError: name 'cat' is not defined

This list of functions is called a traceback. It tells you what program file the error
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occurred in, and what line, and what functions were executing at the time. It also
shows the line of code that caused the error.

The order of the functions in the traceback is the same as the order of the frames in the
stack diagram. The function that is currently running is at the bottom.

5.8 Fruitful functions and void functions
Some of the functions we are using, such as the math functions, yield results; for want
of a better name, I call them fruitful functions. Other functions, like print twice,
perform an action but don’t return a value. They are called void functions.

When you call a fruitful function, you almost always want to do something with the
result; for example, you might assign it to a variable or use it as part of an expression:

x = math.cos(radians)
golden = (math.sqrt(5) + 1) / 2

When you call a function in interactive mode, Python displays the result:

>>> math.sqrt(5)
2.2360679774997898

But in a script, if you call a fruitful function all by itself, the return value is lost forever!

math.sqrt(5)

This script computes the square root of 5, but since it doesn’t store or display the result,
it is not very useful.

Void functions might display something on the screen or have some other effect, but
they don’t have a return value. If you try to assign the result to a variable, you get a
special value called None.

>>> result = print_twice('Bing')
Bing
Bing
>>> print(result)
None

The value None is not the same as the string ’None’. It is a special value that has its
own class:

>>> print(type(None))
<class 'NoneType'>

The functions we have written so far are all void. We will start writing fruitful functions
in the next section.
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5.9 Return values
Our first example of a fruitful function is area, which returns the area of a circle with
the given radius:

def area(radius):
temp = math.pi * radius**2
return temp

In a fruitful function the return statement includes a return value. This statement
means: “Return immediately from this function and use the following expression as
a return value.” The expression provided can be arbitrarily complicated, so we could
have written this function more concisely:

def area(radius):
return math.pi * radius**2

On the other hand, temporary variables like temp often make debugging easier.

Sometimes it is useful to have multiple return statements, one in each branch of a
conditional:

def absolute_value(x):
if x < 0:

return -x
else:

return x

Since these return statements are in an alternative conditional, only one will be exe-
cuted.

As soon as a return statement executes, the function terminates without executing any
subsequent statements. Code that appears after a return statement, or any other place
the flow of execution can never reach, is called dead code.

In a fruitful function, it is a good idea to ensure that every possible path through the
program hits a return statement. For example:

def absolute_value(x):
if x < 0:

return -x
elif x > 0:

return x

This program is not correct because if x happens to be 0, neither condition is true, and
the function ends without hitting a return statement. If the flow of execution gets to
the end of a function, the return value is None, which is not the absolute value of 0.

>>> print(absolute_value(0))
None
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Exercise 5.3. Write a compare function that returns 1 if x > y, 0 if x == y, and -1 if
x < y.

5.10 Boolean functions
Functions can return booleans, which is often convenient for hiding complicated tests
inside functions. For example:

def is_divisible(x, y):
if x % y == 0:

return True
else:

return False

It is common to give boolean functions names that sound like yes/no questions;
is divisible returns either True or False to indicate whether x is divisible by y.

Here is an example:

>>> is_divisible(6, 4)
False
>>> is_divisible(6, 3)
True

The result of the == operator is a boolean, so we can write the function more concisely
by returning it directly:

def is_divisible(x, y):
return x % y == 0

Boolean functions are often used in conditional statements:

if is_divisible(x, y):
print('x is divisible by y')

It might be tempting to write something like:

if is_divisible(x, y) == True:
print('x is divisible by y')

But the extra comparison is unnecessary.
Exercise 5.4. Write a function is between(x, y, z) that returns True if x ≤ y ≤ z
or False otherwise.

5.11 Incremental development
As you write larger functions, you might start find yourself spending more time debug-
ging.
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To deal with increasingly complex programs, you might want to try a process called
incremental development. The goal of incremental development is to avoid long de-
bugging sessions by adding and testing only a small amount of code at a time.

As an example, suppose you want to find the distance between two points, given by the
coordinates (x1,y1) and (x2,y2). By the Pythagorean theorem, the distance is:

distance =
√
(x2− x1)2 +(y2− y1)2

The first step is to consider what a distance function should look like in Python. In
other words, what are the inputs (parameters) and what is the output (return value)?

In this case, the two points are the inputs, which you can represent using four parame-
ters. The return value is the distance, which is a floating-point value.

Already you can write an outline of the function:

def distance(x1, y1, x2, y2):
return 0.0

Obviously, this version doesn’t compute distances; it always returns zero. But it is
syntactically correct, and it runs, which means that you can test it before you make it
more complicated.

To test the new function, call it with sample arguments:

>>> distance(1, 2, 4, 6)
0.0

I chose these values so that the horizontal distance is 3 and the vertical distance is 4;
that way, the result is 5 (the hypotenuse of a 3-4-5 triangle). When testing a function,
it is useful to know the right answer.

At this point we have confirmed that the function is syntactically correct, and we can
start adding code to the body. A reasonable next step is to find the differences x2− x1
and y2− y1. The next version stores those values in temporary variables and prints
them.

def distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 - y1
print('dx is', dx)
print('dy is', dy)
return 0.0

If the function is working, it should display ’dx is 3’ and ’dy is 4’. If so, we know
that the function is getting the right arguments and performing the first computation
correctly. If not, there are only a few lines to check.

Next we compute the sum of squares of dx and dy:
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def distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 - y1
dsquared = dx**2 + dy**2
print('dsquared is: ', dsquared)
return 0.0

Again, you would run the program at this stage and check the output (which should be
25).

Finally, you can use math.sqrt to compute and return the result:

def distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 - y1
dsquared = dx**2 + dy**2
result = math.sqrt(dsquared)
return result

If that works correctly, you are done. Otherwise, you might want to print the value of
result before the return statement.

The final version of the function doesn’t display anything when it runs; it only returns
a value. The print statements we wrote are useful for debugging, but once you get
the function working, you should remove them. Code like that is called scaffolding
because it is helpful for building the program but is not part of the final product.

When you start out, you should add only a line or two of code at a time. As you gain
more experience, you might find yourself writing and debugging bigger chunks. Either
way, incremental development can save you a lot of debugging time.

The key aspects of the process are:

1. Start with a working program and make small incremental changes. At any point,
if there is an error, you should have a good idea where it is.

2. Use temporary variables to hold intermediate values so you can display and
check them.

3. Once the program is working, you might want to remove some of the scaffolding
or consolidate multiple statements into compound expressions, but only if it does
not make the program difficult to read.

Exercise 5.5. Use incremental development to write a function called hypotenuse
that returns the length of the hypotenuse of a right triangle given the lengths of the two
legs as arguments. Record each stage of the development process as you go.
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5.12 docstring
A docstring is a string at the beginning of a function that explains the interface (“doc”
is short for “documentation”). Here is an example for our above distance function:

def distance(x1, y1, x2, y2):
"""Calculates the distance between two points
when given their x and y numeric values.
"""
dx = x2 - x1
dy = y2 - y1
dsquared = dx**2 + dy**2
result = math.sqrt(dsquared)
return result

This docstring is a triple-quoted string, also known as a multi-line string because the
triple quotes allow the string to span more than one line.

It is terse, but it contains the essential information someone would need to use this
function. It explains concisely what the function does (without getting into the details
of how it does it). It explains what effect each parameter has on the behavior of the
function and what type each parameter should be (if it is not obvious).

Writing this kind of documentation is an important part of interface design. A well-
designed interface should be simple to explain; if you are having a hard time explaining
one of your functions, that might mean that the interface could be improved.

5.13 Composition
As you should expect by now, you can call one function from within another. This
ability is called composition.

As an example, we’ll write a function that takes two points, the center of the circle and
a point on the perimeter, and computes the area of the circle.

Assume that the center point is stored in the variables xc and yc, and the perimeter
point is in xp and yp. The first step is to find the radius of the circle, which is the
distance between the two points. Fortunately, there is a function, distance, that does
that:

radius = distance(xc, yc, xp, yp)

The next step is to find the area of a circle with that radius:

result = area(radius)

Wrapping that up in a function, we get:
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def circle_area(xc, yc, xp, yp):
radius = distance(xc, yc, xp, yp)
result = area(radius)
return result

The temporary variables radius and result are useful for development and debug-
ging, but once the program is working, we can make it more concise by composing the
function calls:

def circle_area(xc, yc, xp, yp):
return area(distance(xc, yc, xp, yp))

5.14 Debugging
As you start writing bigger programs, you might find yourself spending more time
debugging. More code means more chances to make an error and more place for bugs
to hide.

One way to cut your debugging time is “debugging by bisection.” For example, if there
are 100 lines in your program and you check them one at a time, it would take 100
steps.

Instead, try to break the problem in half. Look at the middle of the program, or near
it, for an intermediate value you can check. Add a print statement (or something else
that has a verifiable effect) and run the program.

If the mid-point check is incorrect, the problem must be in the first half of the program.
If it is correct, the problem is in the second half.

Every time you perform a check like this, you halve the number of lines you have to
search. After six steps (which is much less than 100), you would be down to one or
two lines of code.

At least in theory. In practice it is not always clear what the “middle of the program”
is and not always possible to check it. It doesn’t make sense to count lines and find the
exact midpoint. Instead, think about places in the program where there might be errors
and places where it is easy to put a check. Then choose a spot where you think the
chances are about the same that the bug is before or after the check.

5.15 Glossary
fruitful function: A function that returns a value.

void function: A function that doesn’t return a value.

function definition: A statement that creates a new function, specifying its name, pa-
rameters, and the statements it executes.
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function object: A value created by a function definition. The name of the function is
a variable that refers to a function object.

header: The first line of a function definition.

body: The sequence of statements inside a function definition.

parameter: A name used inside a function to refer to the value passed as an argument.

function call: A statement that executes a function. It consists of the function name
followed by an argument list.

argument: A value provided to a function when the function is called. This value is
assigned to the corresponding parameter in the function.

local variable: A variable defined inside a function. A local variable can only be used
inside its function.

return value: The result of a function. If a function call is used as an expression, the
return value is the value of the expression.

flow of execution: The order in which statements are executed during a program run.

stack diagram: A graphical representation of a stack of functions, their variables, and
the values they refer to.

frame: A box in a stack diagram that represents a function call. It contains the local
variables and parameters of the function.

traceback: A list of the functions that are executing, printed when an exception oc-
curs.

temporary variable: A variable used to store an intermediate value in a complex cal-
culation.

dead code: Part of a program that can never be executed, often because it appears after
a return statement.

None: A special value returned by functions that have no return statement or a return
statement without an argument.

incremental development: A program development plan intended to avoid debugging
by adding and testing only a small amount of code at a time.

scaffolding: Code that is used during program development but is not part of the final
version.

guardian: A programming pattern that uses a conditional statement to check for and
handle circumstances that might cause an error.
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5.16 Exercises
Exercise 5.6. Fermat’s Last Theorem says that there are no integers a, b, and c such
that

an +bn = cn

for any values of n greater than 2.

Write a function named check fermat that takes four parameters—a, b, c and n—and
that checks to see if Fermat’s theorem holds. If n is greater than 2 and it turns out to
be true that

an +bn = cn

the program should print “Holy smokes, Fermat was wrong!” Otherwise the program
should print “No, that doesn’t work.”
Exercise 5.7. Python provides a built-in function called len that returns the length of
a string, so the value of len(’allen’) is 5.

Write a function named right justify that takes a string named s as a parameter
and that prints the string with enough leading spaces so that the last letter of the string
is in column 70 of the display.

>>> right_justify('allen')
allen

Exercise 5.8.

Write a function that draws grids like this in any size1:

+ - - - - - + - - - - - +
| | |
| | |
| | |
| | |
+ - - - - - + - - - - - +
| | |
| | |
| | |
| | |
+ - - - - - + - - - - - +

Hint: to print more than one value on a line, you can print a comma-separated se-
quence:

print('+', '-')

1Based on an exercise in Oualline, Practical C Programming, Third Edition, O’Reilly (1997)
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If we add the argument end=’’, Python leaves the line unfinished, so the value printed
next appears on the same line.

print('+', end='')
print('-')

The output of these statements is ’+ -’.
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Strings

6.1 Characters
A character is a string one unit in length. Characters are stored internally in the com-
puter as a number, with one unique number for each character. We can find this number
with the ord conversion function, and conversely convert numbers into characters with
the chr function.

>>> ord('A')
65
>>> chr(66)
'B'

6.2 A string is a sequence
A string is a sequence of characters. You can access the characters one at a time with
the bracket operator:

>>> fruit = 'banana'
>>> letter = fruit[1]

The second statement selects character number 1 from fruit and assigns it to letter.

The expression in brackets is called an index. The index indicates which character in
the sequence you want (hence the name).

But you might not get what you expect:

>>> print(letter)
a
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For most people, the first letter of ’banana’ is b, not a. But for computer scientists,
the index is an offset from the beginning of the string, and the offset of the first letter
is zero.

>>> letter = fruit[0]
>>> print(letter)
b

So b is the 0th letter (“zero-eth”) of ’banana’, a is the 1th letter (“one-eth”), and n is
the 2th (“two-eth”) letter.

You can use any expression, including variables and operators, as an index, but the
value of the index has to be an integer. Otherwise you get:

>>> letter = fruit[1.0]
TypeError: string indices must be integers

6.3 len

len is a built-in function that returns the number of characters in a string:

>>> fruit = 'banana'
>>> len(fruit)
6

To get the last letter of a string, you might be tempted to try something like this:

>>> length = len(fruit)
>>> last = fruit[length]
IndexError: string index out of range

The reason for the IndexError is that there is no letter in ’banana’ with the index 6.
Since we started counting at zero, the six letters are numbered 0 to 5. To get the last
character, you have to subtract 1 from length:

>>> last = fruit[length-1]
>>> print(last)
a

Alternatively, you can use negative indices, which count backward from the end of the
string. The expression fruit[-1] yields the last letter, fruit[-2] yields the second
to last, and so on.

6.4 String operations
In general, you cannot perform mathematical operations on strings, even if the strings
look like numbers, so the following are illegal:



6.5. String slices 57

'2'-'1' 'eggs'/'easy' 'third'*'a charm'

The + operator does work with strings, but it might not do exactly what you expect: it
performs concatenation, which means joining the strings by linking them end-to-end.
For example:

first = 'throat'
second = 'warbler'
print(first + second)

The output of this program is throatwarbler.

The * operator also works on strings; it performs repetition. For example, ’Spam’*3 is
’SpamSpamSpam’. If one of the operands is a string, the other has to be an integer.

On one hand, this use of + and * makes sense by analogy with addition and multi-
plication. Just as 4*3 is equivalent to 4+4+4, we expect ’Spam’*3 to be the same as
’Spam’+’Spam’+’Spam’, and it is. On the other hand, there is a significant way in
which string concatenation and repetition are different from integer addition and multi-
plication. Can you think of a property that addition and multiplication have that string
concatenation and repetition do not?

6.5 String slices

A segment of a string is called a slice. Selecting a slice is similar to selecting a charac-
ter:

>>> s = 'Monty Python'
>>> print(s[0:5])
Monty
>>> print(s[6:13])
Python

The operator [n:m] returns the part of the string from the “n-eth” character to the
“m-eth” character, including the first but excluding the last. This behavior is counter-
intuitive, but might help to imagine the indices pointing between the characters, as in
the following diagram:

fruit b a n na a ’

0 1 2 3 4 5 6index

’

If you omit the first index (before the colon), the slice starts at the beginning of the
string. If you omit the second index, the slice goes to the end of the string. Thus:
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>>> fruit = 'banana'
>>> fruit[:3]
'ban'
>>> fruit[3:]
'ana'

If the first index is greater than or equal to the second the result is an empty string,
represented by two quotation marks:

>>> fruit = 'banana'
>>> fruit[3:3]
''

An empty string contains no characters and has length 0, but other than that, it is the
same as any other string.
Exercise 6.1. Given that fruit is a string, what does fruit[:] mean?

6.6 Strings are immutable
It is tempting to use the [] operator on the left side of an assignment, with the intention
of changing a character in a string. For example:

>>> greeting = 'Hello, world!'
>>> greeting[0] = 'J'
TypeError: object does not support item assignment

The “object” in this case is the string and the “item” is the character you tried to assign.
For now, an object is the same thing as a value, but we will refine that definition later.
An item is one of the values in a sequence.

The reason for the error is that strings are immutable, which means you can’t change
an existing string. The best you can do is create a new string that is a variation on the
original:

>>> greeting = 'Hello, world!'
>>> new_greeting = 'J' + greeting[1:]
>>> print(new_greeting)
Jello, world!

This example concatenates a new first letter onto a slice of greeting. It has no effect
on the original string.

6.7 string methods
A method is similar to a function—it takes arguments and returns a value—but the
syntax is different. Methods are attached to classes. For example, the method upper is
a part of the string class and returns a new string with all uppercase letters:
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Instead of the function syntax upper(word), it uses the method syntax word.upper().

>>> word = 'banana'
>>> new_word = word.upper()
>>> print(new_word)
BANANA

This form of dot notation specifies the name of the method, upper, and the name of
the string to apply the method to, word. The parentheses indicate that this method has
no parameters.

A method call is called an invocation; in this case, we would say that we are invoking
upper on the word.

The string method named find is the opposite of the [] operator. Instead of taking
an index and extracting the corresponding character, it takes a character and finds the
index where that character appears. If the character is not found, the function returns
-1.

>>> word = 'banana'
>>> index = word.find('a')
>>> print(index)
1

In this example, we invoke find on word and pass the letter we are looking for as a
parameter.

The find method can find substrings, not just characters:

>>> word.find('na')
2

It can take as a second argument the index where it should start:

>>> word.find('na', 3)
4

And as a third argument where it should stop:

>>> name = 'bob'
>>> name.find('b', 1, 2)
-1

This search fails because b does not appear in the index range from 1 to 2 (not including
2).
Exercise 6.2. Another useful string method is called count Read the documentation of
this method and write an invocation that counts the number of as in ’banana’. Hint:
there are three.
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6.8 Glossary
object: Something a variable can refer to. For now, you can use “object” and “value”

interchangeably.

sequence: An ordered set; that is, a set of values where each value is identified by an
integer index.

item: One of the values in a sequence.

index: An integer value used to select an item in a sequence, such as a character in a
string.

slice: A part of a string specified by a range of indices.

empty string: A string with no characters and length 0, represented by two quotation
marks.

concatenate: To join two operands end-to-end.

immutable: The property of a sequence whose items cannot be assigned.

traverse: To iterate through the items in a sequence, performing a similar operation
on each.

search: A pattern of traversal that stops when it finds what it is looking for.

counter: A variable used to count something, usually initialized to zero and then in-
cremented.

method: A function that is associated with an object and called using dot notation.

invocation: A statement that calls a method.

6.9 Exercises



Chapter 7

Iteration

7.1 Multiple assignment

As you may have discovered, it is legal to make more than one assignment to the same
variable. A new assignment makes an existing variable refer to a new value (and stop
referring to the old value).

bruce = 5
print(bruce)
bruce = 7
print(bruce)

The output of this program is 5, then 7, because the first time bruce is printed, its
value is 5, and the second time, its value is 7. The comma at the end of the first print
statement suppresses the newline, which is why both outputs appear on the same line.

Here is what multiple assignment looks like in a state diagram:

7

5
bruce

With multiple assignment it is especially important to distinguish between an assign-
ment operation and a statement of equality. Because Python uses the equal sign (=) for
assignment, it is tempting to interpret a statement like a = b as a statement of equality.
It is not!

First, equality is a symmetric relation and assignment is not. For example, in mathe-
matics, if a = 7 then 7 = a. But in Python, the statement a = 7 is legal and 7 = a is
not.
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Furthermore, in mathematics, a statement of equality is either true or false, for all time.
If a = b now, then a will always equal b. In Python, an assignment statement can make
two variables equal, but they don’t have to stay that way:

a = 5
b = a # a and b are now equal
a = 3 # a and b are no longer equal

The third line changes the value of a but does not change the value of b, so they are no
longer equal.

Although multiple assignment is frequently helpful, you should use it with caution. If
the values of variables change frequently, it can make the code difficult to read and
debug.

7.2 Updating variables

One of the most common forms of multiple assignment is an update, where the new
value of the variable depends on the old.

x = x+1

This means “get the current value of x, add one, and then update x with the new value.”

If you try to update a variable that doesn’t exist, you get an error, because Python
evaluates the right side before it assigns a value to x:

>>> x = x + 1
NameError: name 'x' is not defined

Before you can update a variable, you have to initialize it, usually with a simple as-
signment:

>>> x = 0
>>> x = x + 1

Updating a variable by adding 1 is called an increment; subtracting 1 is called a decre-
ment.

Since updating variables is so common, there is a syntax shortcut for these operations.
We can rewrite x = x + 1 as x +=1, where the operator immediately precedes the
assignment.

>>> x = 0
>>> x += 1

This shortcut works will all of our typical operators, +, -, *, /, // and %.
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7.3 The while statement

Computers are often used to automate repetitive tasks. Repeating identical or similar
tasks without making errors is something that computers do well and people do poorly.

This repetition is also called iteration. Because iteration is so common, Python pro-
vides several language features to make it easier. One is the while statement. Here is
a function called countdown that uses a while statement to simulate a rocket launch
countdown:

def countdown(n):
while n > 0:

print(n)
n = n - 1

print('Blastoff!')

You can almost read the while statement as if it were English. It means, “While n is
greater than 0, display the value of n and then reduce the value of n by 1. When you
get to 0, display the word Blastoff!”

More formally, here is the flow of execution for a while statement:

1. Evaluate the condition, yielding True or False.

2. If the condition is false, exit the while statement and continue execution at the
next statement.

3. If the condition is true, execute the body and then go back to step 1.

This type of flow is called a loop because the third step loops back around to the top.

The body of the loop should change the value of one or more variables so that even-
tually the condition becomes false and the loop terminates. Otherwise the loop will
repeat forever, which is called an infinite loop. An endless source of amusement for
computer scientists is the observation that the directions on shampoo, “Lather, rinse,
repeat,” are an infinite loop.

In the case of countdown, we can prove that the loop terminates because we know that
the value of n is finite, and we can see that the value of n gets smaller each time through
the loop, so eventually we have to get to 0. In other cases, it is not so easy to tell:

def sequence(n):
while n != 1:

print(n)
if n % 2 == 0: # n is even

n = n / 2
else: # n is odd

n = n * 3 + 1
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The condition for this loop is n != 1, so the loop will continue until n is 1, which
makes the condition false.

Each time through the loop, the program outputs the value of n and then checks whether
it is even or odd. If it is even, n is divided by 2. If it is odd, the value of n is replaced
with n*3+1. For example, if the argument passed to sequence is 3, the resulting se-
quence is 3, 10, 5, 16, 8, 4, 2, 1.

Since n sometimes increases and sometimes decreases, there is no obvious proof that
n will ever reach 1, or that the program terminates. For some particular values of n,
we can prove termination. For example, if the starting value is a power of two, then
the value of n will be even each time through the loop until it reaches 1. The previous
example ends with such a sequence, starting with 16.

The hard question is whether we can prove that this program terminates for all positive
values of n. So far, no one has been able to prove it or disprove it!

7.4 Sentinel loops
Sometimes you don’t know it’s time to end a loop until you get half way through the
body. In that case you can set a sentinel to watch for a condition and jump out of the
loop.

For example, suppose you want to take input from the user until they type done. You
could write:

finished = False
while not finished:

line = input('> ')
if line == 'done':

finished = True
else:

print(line)

print('Done!')

The loop condition is based on the sentinel finished, which begins as False, meaning
we are not finished with the loop.

Each time through, it prompts the user with an angle bracket. If the user types done, the
sentinel activates and will be set to True, which exits the loop. Otherwise the program
echos whatever the user types and goes back to the top of the loop. Here’s a sample
run:

> not done
not done
> done
Done!
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This way of writing while loops is common because you can check the condition in
multiple ways anywhere in the loop (not just at the top).

7.5 Square roots
Loops are often used in programs that compute numerical results by starting with an
approximate answer and iteratively improving it.

For example, one way of computing square roots is Newton’s method. Suppose that
you want to know the square root of a. If you start with almost any estimate, x, you can
compute a better estimate with the following formula:

y =
x+a/x

2
For example, if a is 4 and x is 3:

>>> a = 4.0
>>> x = 3.0
>>> y = (x + a / x) / 2
>>> print(y)
2.16666666667

Which is closer to the correct answer (
√

4 = 2). If we repeat the process with the new
estimate, it gets even closer:

>>> x = y
>>> y = (x + a / x) / 2
>>> print(y)
2.00641025641

After a few more updates, the estimate is almost exact:

>>> x = y
>>> y = (x + a / x) / 2
>>> print(y)
2.00001024003
>>> x = y
>>> x = (x + a / x) / 2
>>> print(y)
2.00000000003

In general we don’t know ahead of time how many steps it takes to get to the right
answer, but we know when we get there because the estimate stops changing:

>>> x = y
>>> y = (x + a / x) / 2
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>>> print(y)
2.0
>>> x = y
>>> y = (x + a / x) / 2
>>> print(y)
2.0

When y == x, we can stop. Here is a loop that starts with an initial estimate, x, and
improves it until it stops changing:

finished = False
while not finished:

print(x)
y = (x + a / x) / 2
if y == x:

finished = True
x = y

For most values of a this works fine, but in general it is dangerous to test float equality.
Floating-point values are only approximately right: most rational numbers, like 1/3,
and irrational numbers, like

√
2, can’t be represented exactly with a float.

Rather than checking whether x and y are exactly equal, it is safer to use math.fabs
to compute the absolute value, or magnitude, of the difference between them:

if math.fabs(y - x) < something_small:
finished = True

Where something small has a value like 0.0000001 that determines how close is
close enough.
Exercise 7.1. Wrap this loop in a function called square root that takes a as a pa-
rameter, chooses a reasonable value of x, and returns an estimate of the square root of
a.

7.6 Debugging
When you use indices to traverse the values in a sequence, it is tricky to get the begin-
ning and end of the traversal right. Here is a function that is supposed to compare two
words and return True if one of the words is the reverse of the other, but it contains
two errors:

def is_reverse(word1, word2):
if len(word1) != len(word2):

return False

i = 0
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j = len(word2)

while j > 0:
if word1[i] != word2[j]:

return False
i = i + 1
j = j - 1

return True

The first if statement checks whether the words are the same length. If not, we can
return False immediately and then, for the rest of the function, we can assume that the
words are the same length. This is another example of a guardian.

i and j are indices: i traverses word1 forward while j traverses word2 backward. If we
find two letters that don’t match, we can return False immediately. If we get through
the whole loop and all the letters match, we return True.

If we test this function with the words “pots” and “stop”, we expect the return value
True, but we get an IndexError:

>>> is_reverse('pots', 'stop')
...

File "reverse.py", line 15, in is_reverse
if word1[i] != word2[j]:

IndexError: string index out of range

For debugging this kind of error, my first move is to print the values of the indices
immediately before the line where the error appears.

while j > 0:
print(i, j) # print here

if word1[i] != word2[j]:
return False

i = i + 1
j = j - 1

Now when I run the program again, I get more information:

>>> is_reverse('pots', 'stop')
0 4
...
IndexError: string index out of range

The first time through the loop, the value of j is 4, which is out of range for the
string ’pots’. The index of the last character is 3, so the initial value for j should
be len(word2) - 1.
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If I fix that error and run the program again, I get:

>>> is_reverse('pots', 'stop')
0 3
1 2
2 1
True

This time we get the right answer, but it looks like the loop only ran three times, which
is suspicious. To get a better idea of what is happening, it is useful to draw a state
diagram. During the first iteration, the frame for is reverse looks like this:

i 0 j 3

word1 ’pots’ word2 ’stop’

I took a little license by arranging the variables in the frame and adding dotted lines to
show that the values of i and j indicate characters in word1 and word2.

7.7 Glossary
multiple assignment: Making more than one assignment to the same variable during

the execution of a program.

update: An assignment where the new value of the variable depends on the old.

initialize: An assignment that gives an initial value to a variable that will be updated.

increment: An update that increases the value of a variable (often by one).

decrement: An update that decreases the value of a variable.

iteration: Repeated execution of a set of statements using a loop.

infinite loop: A loop in which the terminating condition is never satisfied.

7.8 Exercises

Exercise 7.2. To test the square root algorithm in this chapter, you could compare it
with math.sqrt. Write a function named test square root that prints a table like
this:
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1.0 1.0 1.0 0.0
2.0 1.41421356237 1.41421356237 2.22044604925e-16
3.0 1.73205080757 1.73205080757 0.0
4.0 2.0 2.0 0.0
5.0 2.2360679775 2.2360679775 0.0
6.0 2.44948974278 2.44948974278 0.0
7.0 2.64575131106 2.64575131106 0.0
8.0 2.82842712475 2.82842712475 4.4408920985e-16
9.0 3.0 3.0 0.0

The first column is a number, a; the second column is the square root of a computed
with the function from Exercise 7.1; the third column is the square root computed by
math.sqrt; the fourth column is the absolute value of the difference between the two
estimates.
Exercise 7.3. The built-in function eval takes a string and evaluates it using the
Python interpreter. For example:

>>> eval('1 + 2 * 3')
7
>>> import math
>>> eval('math.sqrt(5)')
2.2360679774997898
>>> eval('type(math.pi)')
<class 'float'>

Write a function called eval loop that iteratively prompts the user, takes the resulting
input and evaluates it using eval, and prints the result.

It should continue until the user enters ’done’, and then return the value of the last
expression it evaluated.
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Chapter 8

Lists

8.1 A list is a sequence

Like a string, a list is a sequence of values. In a string, the values are characters; in a
list, they can be any type. The values in list are called elements or sometimes items.

There are several ways to create a new list; the simplest is to enclose the elements in
square brackets ([ and ]):

[10, 20, 30, 40]
['crunchy frog', 'ram bladder', 'lark vomit']

The first example is a list of four integers. The second is a list of three strings. The
elements of a list don’t have to be the same type. The following list contains a string, a
float, an integer, and (lo!) another list:

['spam', 2.0, 5, [10, 20]]

A list within another list is said to be nested.

A list that contains no elements is called an empty list; you can create one with empty
brackets, [].

As you might expect, you can assign list values to variables:

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']
>>> numbers = [17, 123]
>>> empty = []
>>> print(cheeses, numbers, empty)
['Cheddar', 'Edam', 'Gouda'] [17, 123] []
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8.2 Lists are mutable
The syntax for accessing the elements of a list is the same as for accessing the charac-
ters of a string—the bracket operator ([]). The expression inside the brackets specifies
the index. Remember that the indices start at 0:

>>> print(cheeses[0])
Cheddar

Unlike strings, lists are mutable. When the bracket operator appears on the left side of
an assignment, it identifies the element of the list that will be assigned.

>>> numbers = [17, 123]
>>> numbers[1] = 5
>>> print(numbers)
[17, 5]

You can think of a list as a relationship between indices and elements. This relationship
is called a mapping; each index “maps to” one of the elements. Here is a state diagram
showing cheeses, numbers and empty:

0

1

list

numbers 17

123

5

list

empty

0

1

2

’Cheddar’

’Edam’

’Gouda’

list

cheeses

Lists are represented by boxes with the word “list” outside and the elements of the
list inside. cheeses refers to a list with three elements indexed 0, 1 and 2. numbers
contains two elements; the diagram shows that the value of the second element has
been reassigned from 123 to 5. empty refers to a list with no elements.

The bracket operator can appear anywhere in an expression. When it appears on the
left side of an assignment, it changes one of the elements in the list, so the one-eth
element of numbers, which used to be 123, is now 5.

List indices work the same way as string indices:
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• Any integer expression can be used as an index.

• If you try to read or write an element that does not exist, you get an IndexError.

• If an index has a negative value, it counts backward from the end of the list.

8.3 List operations
The + operator concatenates lists:

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> c = a + b
>>> print(c)
[1, 2, 3, 4, 5, 6]

Similarly, the * operator repeats a list a given number of times:

>>> [0] * 4
[0, 0, 0, 0]
>>> [1, 2, 3] * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]

The first example repeats [0] four times. The second example repeats the list [1, 2,
3] three times.

8.4 List slices
The slice operator also work on lists:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']
>>> t[1:3]
['b', 'c']
>>> t[:4]
['a', 'b', 'c', 'd']
>>> t[3:]
['d', 'e', 'f']

If you omit the first index, the slice starts at the beginning. If you omit the second, the
slice goes to the end. So if you omit both, the slice is a copy of the whole list.

>>> t[:]
['a', 'b', 'c', 'd', 'e', 'f']

A slice operator on the left side of an assignment can update multiple elements:
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>>> t = ['a', 'b', 'c', 'd', 'e', 'f']
>>> t[1:3] = ['x', 'y']
>>> print(t)
['a', 'x', 'y', 'd', 'e', 'f']

8.5 List methods
Python provides methods that operate on lists. For example, append adds a new ele-
ment to the end of a list:

>>> t = ['a', 'b', 'c']
>>> t.append('d')
>>> print(t)
['a', 'b', 'c', 'd']

extend takes a list as an argument and appends all of the elements:

>>> t1 = ['a', 'b', 'c']
>>> t2 = ['d', 'e']
>>> t1.extend(t2)
>>> print(t1)
['a', 'b', 'c', 'd', 'e']

This example leaves t2 unmodified.

sort arranges the elements of the list from low to high:

>>> t = ['d', 'c', 'e', 'b', 'a']
>>> t.sort()
>>> print(t)
['a', 'b', 'c', 'd', 'e']

List methods are all void; they modify the list and return None. If you accidentally
write t = t.sort(), you will be disappointed with the result.

8.6 Deleting elements
There are several ways to delete elements from a list. If you know the index of the
element you want, you can use pop:

>>> t = ['a', 'b', 'c']
>>> x = t.pop(1)
>>> print(t)
['a', 'c']
>>> print(x)
b
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pop modifies the list and returns the element that was removed.

If you don’t need the removed value, you can use the del operator:

>>> t = ['a', 'b', 'c']
>>> del t[1]
>>> print(t)
['a', 'c']

If you know the element you want to remove (but not the index), you can use remove:

>>> t = ['a', 'b', 'c']
>>> t.remove('b')
>>> print(t)
['a', 'c']

The return value from remove is None.

To remove more than one element, you can use del with a slice index:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']
>>> del t[1:5]
>>> print(t)
['a', 'f']

As usual, the slice selects all the elements up to, but not including, the second index.

8.7 Objects and values

If we execute these assignment statements:

a = 'banana'
b = 'banana'

We know that a and b both refer to a string, but we don’t know whether they refer to
the same string. There are two possible states:

a

b
’banana’

a

b

’banana’

’banana’

In one case, a and b refer to two different objects that have the same value. In the
second case, they refer to the same object.

To check whether two variables refer to the same object, you can use the is operator.
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>>> a = 'banana'
>>> b = 'banana'
>>> a is b
True

In this example, Python only created one string object, and both a and b refer to it.

In contrast, when you create two lists, you get two objects:

>>> a = [1, 2, 3]
>>> b = [1, 2, 3]
>>> a is b
False

So the state diagram looks like this:

a

b

[ 1, 2, 3 ]

[ 1, 2, 3 ]

In this case we would say that the two lists are equivalent, because they have the same
elements, but not identical, because they are not the same object. If two objects are
identical, they are also equivalent, but if they are equivalent, they are not necessarily
identical.

Until now, we have been using “object” and “value” interchangeably, but it is more
precise to say that an object has a value. If you execute a = [1,2,3], a refers to a list
object whose value is a particular sequence of elements. If another list has the same
elements, we would say it has the same value.

8.8 Aliasing
If a refers to an object and you assign b = a, then both variables refer to the same
object. For example, if you execute:

>>> a = [1, 2, 3]
>>> b = a

Then a and b refer to the same list. The state diagram looks like this:

a

b
[ 1, 2, 3 ]

The association of a variable with an object is called a reference. In this example, there
are two references to the same object.
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An object with more than one reference has, in some sense, more than one name, so
we say that the object is aliased.

If the aliased object is mutable, changes made with one alias affect the other:

>>> b[0] = 17
>>> print(a)
[17, 2, 3]

Although this behavior can be useful, it is sometimes unexpected or undesirable. In
general, it is safer to avoid aliasing when you are working with mutable objects.

For immutable objects like strings, aliasing is not as much of a problem. In this exam-
ple:

a = 'banana'
b = 'banana'

It almost never makes a difference whether a and b refer to the same string or not.

8.9 List arguments

When you pass a list to a function, the function gets a reference to the list. If the func-
tion modifies a list parameter, the caller sees the change. For example, delete head
removes the first element from a list:

def delete_head(t):
del t[0]

Here’s how it is used:

>>> letters = ['a', 'b', 'c']
>>> delete_head(letters)
>>> print(letters)
['b', 'c']

The parameter t and the variable letters are aliases for the same object. The stack
diagram looks like this:

0

1

2

’a’

’b’

’c’

list

t

__main__ letters

delete_head

Since the list is shared by two frames, I drew it between them.
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If a function returns a list, it returns a reference to the list. For example, tail returns a
list that contains all but the first element of the given list:

def tail(t):
return t[1:]

Here’s how tail is used:

>>> letters = ['a', 'b', 'c']
>>> rest = tail(letters)
>>> print(rest)
['b', 'c']

Because the return value was created with the slice operator, it is a new list. The
original list is unmodified.

8.10 Copying lists
When you assign an object to a variable, Python copies the reference to the object.

>>> a = [1, 2, 3]
>>> b = a

In this case a and b refer to the same list.

If you want to copy the list (not just a reference to it), you can use the slice operator:

>>> a = [1, 2, 3]
>>> b = a[:]
>>> print(b)
[1, 2, 3]

Making a slice of a creates a new list. In this case the slice contains all of the elements
from the original list.

Another way to make a copy is the copy function from the copy module:

>>> import copy
>>> a = [1, 2, 3]
>>> b = copy.copy(a)
>>> print(b)

But it is more idiomatic to use the slice operator.

8.11 Lists and strings
A string is a sequence of characters and a list is a sequence of values, but a list of
characters is not the same as a string. To convert from a string to a list of characters,
you can use the list function:
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>>> s = 'spam'
>>> t = list(s)
>>> print(t)
['s', 'p', 'a', 'm']

list breaks a string into individual letters. If you want to break a string into words,
you can use the split method:

>>> s = 'pining for the fjords'
>>> t = s.split()
>>> print(t)
['pining', 'for', 'the', 'fjords']

An optional argument called a delimiter specifies which characters to use as word
boundaries. The following example uses ’, ’ (a comma followed by a space) as the
delimiter:

>>> s = 'spam, spam, spam'
>>> delimiter = ', '
>>> s.split(delimiter)
['spam', 'spam', 'spam']

join is the inverse of split. It takes a list of strings and concatenates the elements.
join is a string method, so you have to invoke it on the delimiter and pass the list as a
parameter:

>>> t = ['pining', 'for', 'the', 'fjords']
>>> delimiter = ' '
>>> delimiter.join(t)
'pining for the fjords'

In this case the delimiter is a space character, so join puts a space between words. To
concatenate strings without spaces, you can use the empty string, ’’ as a delimiter.
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Chapter 9

For Loops

9.1 Traversing a string
A lot of computations involve processing a string one character at a time. Often they
start at the beginning, select each character in turn, do something to it, and continue
until the end. This pattern of processing is called a traversal. One way to write a
traversal is with a while statement:

index = 0
while index < len(fruit):

letter = fruit[index]
print(letter)
index += 1

This loop traverses the string and displays each letter on a line by itself. The loop
condition is index < len(fruit), so when index is equal to the length of the string,
the condition is false, and the body of the loop is not executed. The last character
accessed is the one with the index len(fruit)-1, which is the last character in the
string.
Exercise 9.1. Write a function that takes a string as an argument and displays the
letters backward, one per line.

Another way to write a traversal is with a for loop:

for char in fruit:
print(char)

Each time through the loop, the next character in the string is assigned to the variable
char. The loop continues until no characters are left.

The following example shows how to use concatenation (string addition) and a for
loop to generate an abecedarian series (that is, in alphabetical order). In Robert Mc-
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Closkey’s book Make Way for Ducklings, the names of the ducklings are Jack, Kack,
Lack, Mack, Nack, Ouack, Pack, and Quack. This loop outputs these names in order:

prefixes = 'JKLMNOPQ'
suffix = 'ack'

for letter in prefixes:
print(letter + suffix)

The output is:

Jack
Kack
Lack
Mack
Nack
Oack
Pack
Qack

Of course, that’s not quite right because “Ouack” and “Quack” are misspelled.
Exercise 9.2. Modify the program to fix this error.

9.2 Traversing a list

The most common way to traverse the elements of a list is with a for loop. The syntax
is the same as for strings:

for cheese in cheeses:
print(cheese)

This works well if you only need to read the elements of the list. But if you want to
write or update the elements, you need the indices. A common way to do that is to
combine the functions range and len:

for i in range(len(numbers)):
numbers[i] = numbers[i] * 2

This loop traverses the list and updates each element. len returns the number of ele-
ments in the list. range returns a list of indices from 0 to n−1, where n is the length of
the list. Each time through the loop i gets the index of the next element. The assign-
ment statement in the body uses i to read the old value of the element and to assign the
new value.

range can also take more arguments. With two arguments, range returns a list that
contains all the integers from the first to the second, including the first but not including
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the second! If there is a third argument, it specifies the space between successive
values, which is called the “step size.”

A for loop over an empty list never executes the body:

for x in empty:
print('This never happens.')

Although a list can contain another list, the nested list still counts as a single element.
The length of this list is four:

['spam!', 1, ['Brie', 'Roquefort', 'Pol le Veq'], [1, 2, 3]]

9.3 A find function
What does the following function do?

def find(word, letter):
index = 0
while index < len(word):

if word[index] == letter:
return index

index = index + 1
return -1

This use of loops is the basic logic behind the find method discussed earlier.

This is the first example we have seen of a return statement inside a loop. If
word[index] == letter, the function breaks out of the loop and returns immedi-
ately.

If the character doesn’t appear in the string, the program exits the loop normally and
returns -1.

This pattern of computation—traversing a sequence and returning when we find what
we are looking for—is a called a search.
Exercise 9.3. Modify find so that it has a third parameter, the index in word where it
should start looking.

9.4 Looping and counting
The following program counts the number of times the letter a appears in a string:

word = 'banana'
count = 0
for letter in word:



84 Chapter 9. For Loops

if letter == 'a':
count = count + 1

print(count)

This program demonstrates another pattern of computation called a counter. The vari-
able count is initialized to 0 and then incremented each time an a is found. When the
loop exits, count contains the result—the total number of a’s.
Exercise 9.4. Encapsulate this code in a function named count, and generalize it so
that it accepts the string and the letter as arguments.
Exercise 9.5. Rewrite this function so that instead of traversing the string, it uses the
three-parameter version of find from the previous section.

9.5 The in operator
The operators we have seen so far are all special characters like + and *, but there are a
few operators that are words. in is a boolean operator that takes two strings and returns
True if the first appears as a substring in the second:

>>> 'an' in 'banana'
True
>>> 'c' in 'banana'
False

For example, the following function prints all the letters from word1 that also appear
in word2:

def in_both(word1, word2):
for letter in word1:

if letter in word2:
print(letter)

With well-chosen variable names, Python sometimes reads like English. You could
read this loop, “for (each) letter in (the first) word, if (the) letter (appears) in (the
second) word, print (the) letter.”

Here’s what you get if you compare apples and oranges:

>>> in_both('apples', 'oranges')
a
e
s

The in operator also works on lists.

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']
>>> 'Edam' in cheeses
True
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>>> 'Brie' in cheeses
False

9.6 break

As with while loops, sometimes you don’t know it’s time to end a for loop until you
get half way through the body. Since we can’t reset a sentinal value to exit the loop, in
this case we use the break statement to jump out of the loop.

For example, suppose you want to count the number of times the word ”lemur” appears
in a list, but stop early if you see the word ”done”. You could write:

count = 0
animals = ['cat', 'lemur', 'fox', 'rabbit', 'lemur', 'done', 'lemur']
for item in animals:

if item == 'lemur':
count += 1

elif item == 'done':
break

print(count)

The loop now runs until either it consumes all elements of the list or it hits the break
statement, and count will be equal to 2 after execution.

9.7 Map, filter and reduce

To add up all the numbers in a list, you can use a loop like this:

def add_all(t):
total = 0
for x in t:

total += x
return total

total is initialized to 0. Each time through the loop, x gets one element from the list.
The += operator provides a short way to update a variable:

total += x

is equivalent to:

total = total + x
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As the loop executes, total accumulates the sum of the elements; a variable used this
way is sometimes called an accumulator.

Adding up the elements of a list is such a common operation that Python provides it as
a built-in function, sum:

>>> t = [1, 2, 3]
>>> sum(t)
6

An operation like this that combines a sequence of elements into a single value is
sometimes called reduce.

Sometimes you want to traverse one list while building another. For example, the
following function takes a list of strings and returns a new list that contains capitalized
strings:

def capitalize_all(t):
res = []
for s in t:

res.append(s.capitalize())
return res

res is initialized with an empty list; each time through the loop, we append the next
element. So res is another kind of accumulator.

An operation like capitalize all is sometimes called a map because it “maps” a
function (in this case the method capitalize) onto each of the elements in a sequence.

Another common operation is to select some of the elements from a list and return a
sublist. For example, the following function takes a list of strings and returns a list that
contains only the uppercase strings:

def only_upper(t):
res = []
for s in t:

if s.isupper():
res.append(s)

return res

isupper is a string method that returns True if the string contains only upper case
letters.

An operation like only upper is called a filter because it selects some of the elements
and filters out the others.

Most common list operations can be expressed as a combination of map, filter and
reduce. Because these operations are so common, Python provides language features
to support them, including the built-in function reduce and an operator called a “list
comprehension.” But these features are idiomatic to Python, so I won’t go into the
details.
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Exercise 9.6. Write a function that takes a list of numbers and returns the cumulative
sum; that is, a new list where the ith element is the sum of the first i+1 elements from
the original list. For example, the cumulative sum of [1, 2, 3] is [1, 3, 6].

9.8 Debugging

When you are debugging a program, and especially if you are working on a hard bug,
there are four things to try:

reading: Examine your code, read it back to yourself, and check that it means what
you meant to say.

running: Experiment by making changes and running different versions. Often if you
display the right thing at the right place in the program, the problem becomes
obvious, but sometimes you have to spend some time to build scaffolding.

ruminating: Take some time to think! What kind of error is it: syntax, run-time, log-
ical? What information can you get from the error messages, or from the output
of the program? What kind of error could cause the problem you’re seeing?
What did you change last, before the problem appeared?

retreating: At some point, the best thing to do is back off, undoing recent changes,
until you get back to a program that works, and that you understand. Then you
can starting rebuilding.

Beginning programmers sometimes get stuck on one of these activities and forget the
others. Each activity comes with its own failure mode.

For example, reading your code might help if the problem is a typographical error, but
not if the problem is a conceptual misunderstanding. If you don’t understand what your
program does, you can read it 100 times and never see the error, because the error is in
your head.

Running experiments can help, especially if you run small, simple tests. But if you run
experiments without thinking or reading your code, you might fall into a pattern I call
“random walk programming,” which is the process of making random changes until
the program does the right thing. Needless to say, random walk programming can take
a long time.

The way out is to take more time to think. Debugging is like an experimental science.
You should have at least one hypothesis about what the problem is. If there are two or
more possibilities, try to think of a test that would eliminate one of them.

Taking a break sometimes helps with the thinking. So does talking. If you explain the
problem to someone else (or even yourself), you will sometimes find the answer before
you finish asking the question.
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But even the best debugging techniques will fail if there are too many errors, or if the
code you are trying to fix is too big and complicated. Sometimes the best option is to
retreat, simplifying the program until you get to something that you understand, and
that works.

Beginning programmers are often reluctant to retreat, because they can’t stand to delete
a line of code (even if it’s wrong). If it makes you feel better, copy your program into
another file before you start stripping it down. Then you can paste the pieces back in a
little bit at a time.

To summarize, here’s the Fifth Theorem of debugging:

Finding a hard bug requires reading, running, ruminating, and sometimes
retreating. If you get stuck on one of these activities, try the others.

9.9 Glossary
list: A sequence of values.

element: One of the values in a list (or other sequence), also called items.

index: An integer value that indicates an element in a list.

nested list: A list that is an element of another list.

list traversal: The sequential accessing of each element in a list.

mapping: A relationship in which each element of one set corresponds to an element
of another set. For example, a list is a mapping from indices to elements.

accumulator: A variable used in a loop to add up or accumulate a result.

reduce: A processing pattern that traverses a sequence and accumulates the elements
into a single result.

map: A processing pattern that traverses a sequence and performs an operation on
each element.

filter: A processing pattern that traverses a list and selects the elements that satisfy
some criterion.

object: Something a variable can refer to. An object has a type and a value.

equivalent: Having the same value.

identical: Being the same object (which implies equivalence).

reference: The association between a variable and its value.

aliasing: A circumstance where two variables refer to the same object.

delimiter: A character or string used to indicate where a string should be split.
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9.10 Exercises
Exercise 9.7. Write a function called is sorted that takes a list as a parameter and
returns True if the list is sorted in ascending order and False otherwise. You can
assume (as a precondition) that the elements of the list can be compared with the com-
parison operators <, >, etc.

For example, is sorted([1,2,2]) should return True and is sorted([’b’,’a’])
should return False.
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Chapter 10

Recursion

10.1 Recursion
It is legal for one function to call another; it is also legal for a function to call itself.
It may not be obvious why that is a good thing, but it turns out to be one of the most
magical things a program can do. For example, look at the following function:

def countdown(n):
if n <= 0:

print('Blastoff!')
else:

print(n)
countdown(n-1)

If n is 0 or negative, it outputs the word, “Blastoff!” Otherwise, it outputs n and then
calls a function named countdown—itself—passing n-1 as an argument.

What happens if we call this function like this?

>>> countdown(3)

The execution of countdown begins with n=3, and since n is greater than 0, it outputs
the value 3, and then calls itself...

The execution of countdown begins with n=2, and since n is greater than
0, it outputs the value 2, and then calls itself...

The execution of countdown begins with n=1, and since n is
greater than 0, it outputs the value 1, and then calls itself...

The execution of countdown begins with n=0, and
since n is not greater than 0, it outputs the word,
“Blastoff!” and then returns.
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The countdown that got n=1 returns.

The countdown that got n=2 returns.

The countdown that got n=3 returns.

And then you’re back in main . So, the total output looks like this:

3
2
1
Blastoff!

A function that calls itself is recursive; the process is called recursion.

As another example, we can write a function that prints a string n times.

def print_n(s, n):
if n <= 0:

return
print(s)
print_n(s, n-1)

If n <= 0 the return statement exits the function. The flow of execution immediately
returns to the caller, and the remaining lines of the function are not executed.

The rest of the function is similar to countdown: if n is greater than 0, it displays s and
then calls itself to display s n−1 additional times. So the number of lines of output is
1 + (n - 1) which, if you do your algebra right, comes out to n.

For simple examples like this, it is probably easier to use a for loop. But we will see
examples later that are hard to write with a for loop and easy to write with recursion,
so it is good to start early.

10.2 Stack diagrams for recursive functions

In Section 5.7, we used a stack diagram to represent the state of a program during a
function call. The same kind of diagram can help interpret a recursive function.

Every time a function gets called, Python creates a new function frame, which contains
the function’s local variables and parameters. For a recursive function, there might be
more than one frame on the stack at the same time.

This figure shows a stack diagram for countdown called with n = 3:
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__main__

countdown

countdown

countdown

countdown

n 3

n 2

n 1

n 0

As usual, the top of the stack is the frame for main . It is empty because we did not
create any variables in main or pass any arguments to it.

The four countdown frames have different values for the parameter n. The bottom of
the stack, where n=0, is called the base case. It does not make a recursive call, so there
are no more frames.

Draw a stack diagram for print n called with s = ’Hello’ and n=4.

10.3 Infinite recursion
If a recursion never reaches a base case, it goes on making recursive calls forever, and
the program never terminates. This is known as infinite recursion, and it is generally
not a good idea. Here is a minimal program with an infinite recursion:

def recurse():
recurse()

In most programming environments, a program with infinite recursion does not really
run forever. Python reports an error message when the maximum recursion depth is
reached:

File "<stdin>", line 2, in recurse
File "<stdin>", line 2, in recurse
File "<stdin>", line 2, in recurse

.

.

.
File "<stdin>", line 2, in recurse

RuntimeError: Maximum recursion depth exceeded

This traceback is a little bigger than the one we saw in the previous chapter. When the
error occurs, there are 1000 recurse frames on the stack!
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10.4 More recursion
We have only covered a small subset of Python, but you might be interested to know
that this subset is a complete programming language, which means that anything that
can be computed can be expressed in this language. Any program ever written could
be rewritten using only the language features you have learned so far (actually, you
would need a few commands to control devices like the keyboard, mouse, disks, etc.,
but that’s all).

Proving that claim is a nontrivial exercise first accomplished by Alan Turing, one of
the first computer scientists (some would argue that he was a mathematician, but a lot
of early computer scientists started as mathematicians). Accordingly, it is known as
the Turing Thesis. If you take a course on the Theory of Computation, you will have a
chance to see the proof.

To give you an idea of what you can do with the tools you have learned so far, we’ll
evaluate a few recursively defined mathematical functions. A recursive definition is
similar to a circular definition, in the sense that the definition contains a reference to
the thing being defined. A truly circular definition is not very useful:

frabjuous: An adjective used to describe something that is frabjuous.

If you saw that definition in the dictionary, you might be annoyed. On the other hand,
if you looked up the definition of the factorial function, denoted with the symbol !, you
might get something like this:

0! = 1

n! = n(n−1)!

This definition says that the factorial of 0 is 1, and the factorial of any other value, n, is
n multiplied by the factorial of n−1.

So 3! is 3 times 2!, which is 2 times 1!, which is 1 times 0!. Putting it all together, 3!
equals 3 times 2 times 1 times 1, which is 6.

If you can write a recursive definition of something, you can usually write a Python
program to evaluate it. The first step is to decide what the parameters should be. In this
case it should be clear that factorial has a single parameter:

def factorial(n):

If the argument happens to be 0, all we have to do is return 1:

def factorial(n):
if n == 0:

return 1

Otherwise, and this is the interesting part, we have to make a recursive call to find the
factorial of n−1 and then multiply it by n:
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def factorial(n):
if n == 0:

return 1
else:

recurse = factorial(n-1)
result = n * recurse
return result

The flow of execution for this program is similar to the flow of countdown in Sec-
tion 10.1. If we call factorial with the value 3:

Since 3 is not 0, we take the second branch and calculate the factorial of n-1...

Since 2 is not 0, we take the second branch and calculate the factorial of
n-1...

Since 1 is not 0, we take the second branch and calculate the
factorial of n-1...

Since 0 is 0, we take the first branch and return 1 with-
out making any more recursive calls.

The return value (1) is multiplied by n, which is 1, and the result
is returned.

The return value (1) is multiplied by n, which is 2, and the result is re-
turned.

The return value (2) is multiplied by n, which is 3, and the result, 6, becomes the return
value of the function call that started the whole process.

Here is what the stack diagram looks like for this sequence of function calls:

n 3 recurse 2

recurse 1

recurse 1 1return

2return

6return

__main__

factorial

n 2

n 1

n 0

factorial

factorial

factorial

1

1

2

6

The return values are shown being passed back up the stack. In each frame, the return
value is the value of result, which is the product of n and recurse.
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In the last frame, the local variables recurse and result do not exist, because the
branch that creates them did not execute.

10.5 Leap of faith
Following the flow of execution is one way to read programs, but it can quickly become
labyrinthine. An alternative is what I call the “leap of faith.” When you come to a
function call, instead of following the flow of execution, you assume that the function
works correctly and returns the right result.

In fact, you are already practicing this leap of faith when you use built-in functions.
When you call math.cos or math.exp, you don’t examine the bodies of those func-
tions. You just assume that they work because the people who wrote the built-in func-
tions were good programmers.

The same is true when you call one of your own functions. For example, in Sec-
tion 5.10, we wrote a function called is divisible that determines whether one num-
ber is divisible by another. Once we have convinced ourselves that this function is
correct—examining the code and testing—we can use the function without looking at
the code again.

The same is true of recursive programs. When you get to the recursive call, instead
of following the flow of execution, you should assume that the recursive call works
(yields the correct result) and then ask yourself, “Assuming that I can find the factorial
of n− 1, can I compute the factorial of n?” In this case, it is clear that you can, by
multiplying by n.

Of course, it’s a bit strange to assume that the function works correctly when you
haven’t finished writing it, but that’s why it’s called a leap of faith!

10.6 One more example
After factorial, the most common example of a recursively defined mathematical
function is fibonacci, which has the following definition:

fibonacci(0) = 0

fibonacci(1) = 1

fibonacci(n) = fibonacci(n−1)+fibonacci(n−2);

Translated into Python, it looks like this:

def fibonacci (n):
if n == 0:

return 0
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elif n == 1:
return 1

else:
return fibonacci(n-1) + fibonacci(n-2)

If you try to follow the flow of execution here, even for fairly small values of n, your
head explodes. But according to the leap of faith, if you assume that the two recursive
calls work correctly, then it is clear that you get the right result by adding them together.

10.7 Checking types

What happens if we call factorial and give it 1.5 as an argument?

>>> factorial(1.5)
RuntimeError: Maximum recursion depth exceeded

It looks like an infinite recursion. But how can that be? There is a base case—when n
== 0. But if n is not an integer, we can miss the base case and recurse forever.

In the first recursive call, the value of n is 0.5. In the next, it is -0.5. From there, it gets
smaller and smaller, but it will never be 0.

We have two choices. We can try to generalize the factorial function to work with
floating-point numbers, or we can make factorial check the type of its argument.
The first option is called the gamma function and it’s a little beyond the scope of this
book. So we’ll go for the second.

We can use the built-in function isinstance to verify the class of the argument. While
we’re at it, we can also make sure the argument is positive:

def factorial (n):
if not isinstance(n, int):

print('Factorial is only defined for integers.')
return None

elif n < 0:
print('Factorial is only defined for positive integers.')
return None

elif n == 0:
return 1

else:
return n * factorial(n-1)

Now we have three base cases. The first catches nonintegers and the second catches
negative integers. In both cases, the program prints an error message and returns None
to indicate that something went wrong:
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>>> factorial('fred')
Factorial is only defined for integers.
None
>>> factorial(-2)
Factorial is only defined for positive integers.
None

If we get past both checks, then we know that n is a positive integer, and we can prove
that the recursion terminates.

This program demonstrates a pattern sometimes called a guardian. The first two con-
ditionals act as guardians, protecting the code that follows from values that might cause
an error. The guardians make it possible to prove the correctness of the code.

10.8 Hints
If you played with the fibonacci function from Section 10.6, you might have no-
ticed that the bigger the argument you provide, the longer the function takes to run.
Furthermore, the run time increases very quickly.

To understand why, consider this call graph for fibonacci with n=4:

fibonacci

n 4

fibonacci

n 3

fibonacci

n 2

fibonacci

n 0

fibonacci

n 1

fibonacci

n 1

fibonacci

n 2

fibonacci

n 0

fibonacci

n 1

A call graph shows a set function frames, with lines connecting each frame to the
frames of the functions it calls. At the top of the graph, fibonacci with n=4 calls
fibonacci with n=3 and n=2. In turn, fibonacci with n=3 calls fibonacci with n=2
and n=1. And so on.

Count how many times fibonacci(0) and fibonacci(1) are called. This is an inef-
ficient solution to the problem, and it gets worse as the argument gets bigger.

One solution is to keep track of values that have already been computed by storing
them in a list. A previously computed value that is stored for later use is called a hint.
Here is an implementation of fibonacci using hints:
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previous = [0, 1]

def fibonacci(n):
if n < len(previous):

return previous[n]

res = fibonacci(n-1) + fibonacci(n-2)
previous.append(res)
return res

previous keeps track of the Fibonacci numbers we already know. We start with only
two items: 0 and 1.

Whenever fibonacci is called, it checks previous. If the result is already there, it
can return immediately. Otherwise it has to compute the new value, append it to the
previous list, and return it.

previous is created outside the function, so it belongs to the special frame called
main . Variables in main are sometimes called global because they can be ac-

cessed from any function. Unlike local variables, which disappear when their function
ends, global variables persist from one function call to the next.

Using this version of fibonacci, you can compute fibonacci(40) in an eyeblink. If
you compute fibonacci(50), you get:

>>> fibonacci(50)
12586269025

10.9 Debugging

Breaking a large program into smaller functions creates natural checkpoints for debug-
ging. If a function is not working, there are three possibilities to consider:

• There is something wrong with the arguments the function is getting.

• There is something wrong with the function.

• There is something wrong with the return value or the way it is being used.

To rule out the first possibility, you can add a print statement at the beginning of the
function and display the values of the parameters (and maybe their types).

If the parameters look good, add a print statement before each return statement
that displays the return value. If possible, check the result by hand. If necessary,
call the function with special values where you know what the result should be (as in
Section 5.11).



100 Chapter 10. Recursion

If the function seems to be working, look at the function call to make sure the return
value is being used correctly (or used at all!).

Adding print functions at the beginning and end of a function can help make the flow
of execution more visible. For example, here is a version of factorial with print
functions:

def factorial(n):
space = ' ' * (4 * n)
print(space, 'factorial', n)
if n == 0:

print(space, 'returning 1')
return 1

else:
recurse = factorial(n-1)
result = n * recurse
print(space, 'returning', result)
return result

space is a string of space characters that controls the indentation of the output. Here
is the result of factorial(5) :

factorial 5
factorial 4

factorial 3
factorial 2

factorial 1
factorial 0
returning 1

returning 1
returning 2

returning 6
returning 24

returning 120

If you are confused about the flow of execution, this kind of output can be helpful. It
takes some time to develop effective scaffolding, but according to the Sixth Theorem
of Debugging:

A little bit of scaffolding can save a lot of debugging.

10.10 Glossary
recursion: The process of calling the function that is currently executing.

base case: A conditional branch in a recursive function that does not make a recursive
call.



10.11. Exercises 101

infinite recursion: A function that calls itself recursively without ever reaching the
base case. Eventually, an infinite recursion causes a runtime error.

10.11 Exercises
Exercise 10.1. Draw a stack diagram for the following program. What does the pro-
gram print?

def b(z):
prod = a(z, z)
print(z, prod)
return prod

def a(x, y):
x = x + 1
return x * y

def c(x, y, z):
sum = x + y + z
pow = b(sum)**2
return pow

x = 1
y = x + 1
print(c(x, y+3, x+y))
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Chapter 11

Files

11.1 Persistence
Most of the programs we have seen so far are transient in the sense that they run for a
short time and produce some output, but when they end, their data disappears. If you
run the program again, it starts with a clean slate.

Other programs are persistent: they run for a long time (or all the time); they keep at
least some of their data in non-volatile storage (a hard drive, for example); and if they
shut down and restart, they pick up where they left off.

Examples of persistent programs are operating systems, which run pretty much when-
ever a computer is on, and web servers, which run all the time, waiting for requests to
come in on the network.

One of the simplest ways for programs to maintain their data is by reading and writing
text files. We have already seen programs that read text files; in this chapters we will
see programs that write them.

An alternative is to store the state of the program in a database. In this chapter I will
present a simple database and a module, pickle, that makes it easy to store program
data.

11.2 Reading and writing
A text file is a sequence of characters stored on a permanent medium like a hard drive,
flash memory, or CD-ROM. To read a file, you can use open to create a file object:

>>> fin = open('words.txt')
>>> print(fin)
<open file 'words.txt', mode 'r' at 0xb7eb2380>
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Mode ’r’ means that this file is open for reading. The file object provides several
methods for reading data, including readline:

>>> line = fin.readline()
>>> print(line)
aa

The file object keeps track of where it is in the file, so if you invoke readline again,
it picks up from where it left off. You can also use a file object in a for loop.

To write a file, you have to create a file object with mode ’w’ as a second parameter:

>>> fout = open('output.txt', 'w')
>>> print(fout)
<open file 'output.txt', mode 'w' at 0xb7eb2410>

If the file already exists, opening it in write mode clears out the old data and starts
fresh, so be careful! If the file doesn’t exist, a new one is created.

The write method puts data into the file.

>>> line1 = "This here's the wattle,\n"
>>> fout.write(line1)

Again, the file object keeps track of where it is, so if you call write again, it add the
new data to the end.

>>> line2 = "the emblem of our land.\n"
>>> fout.write(line2)

When you are done writing, you have to close the file.

>>> fout.close()

11.3 Format operator
The argument of write has to be a string, so if we want to put other values in a file, we
have to convert them to strings. The easiest way to do that is with str:

>>> x = 52
>>> f.write(str(x))

An alternative is to use the format operator, %. When applied to integers, % is the
modulus operator. But when the first operand is a string, % is the format operator.

The first operand is the format string, and the second operand is a tuple of expressions.
The result is a string that contains the values of the expressions, formatted according
to the format string.
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As an example, the format sequence ’%d’ means that the first expression in the tuple
should be formatted as an integer (d stands for “decimal”):

>>> camels = 42
>>> '%d' % camels
'42'

The result is the string ’42’, which is not to be confused with the integer value 42.

A format sequence can appear anywhere in the format string, so you can embed a value
in a sentence:

>>> camels = 42
>>> 'I have spotted %d camels.' % camels
'I have spotted 42 camels.'

The format sequence ’%g’ formats the next element in the tuple as a floating-point
number (don’t ask why), and ’%s’ formats the next item as a string:

>>> 'In %d years I have spotted %g %s.' % (3, 0.1, 'camels')
'In 3 years I have spotted 0.1 camels.'

By default, the floating-point format prints six decimal places.

The number of elements in the tuple has to match the number of format sequences in
the string. Also, the types of the elements have to match the format sequences:

>>> '%d %d %d' % (1, 2)
TypeError: not enough arguments for format string
>>> '%d' % 'dollars'
TypeError: illegal argument type for built-in operation

In the first example, there aren’t enough elements; in the second, the element is the
wrong type.

You can specify the number of digits as part of the format sequence. For example,
the sequence ’%8.2f’ formats a floating-point number to be 8 characters long, with 2
digits after the decimal point:

>>> '%8.2f' % 3.14159
' 3.14'

The result takes up eight spaces with two digits after the decimal point.

11.4 Filenames and paths
Files are organized into directories (also called “folders”). Every running program has
a “current directory,” which is the default directory for most operations. For example,
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when you create a new file with open, the new file goes in the current directory. And
when you open a file for reading, Python looks for it in the current directory.

The module os provides functions for working with files and directories (“os” stands
for “operating system”). os.getcwd returns the name of the current directory:

>>> import os
>>> cwd = os.getcwd()
>>> print(cwd)
/home/dinsdale

cwd stands for “current working directory.” The result in this example is
/home/dinsdale, which is the home directory of a user named dinsdale.

A string like cwd that identifies a file is called a path. A relative path starts from the
current directory; an absolute path starts from the topmost directory in the file system.

The paths we have seen so far are simple filenames, so they are relative to the current
directory. To find the absolute path to a file, you can use abspath, which is in the
module os.path.

>>> os.path.abspath('memo.txt')
'/home/dinsdale/memo.txt'

os.path.exists checks whether the file (or directory) specified by a path exists:

>>> os.path.exists('memo.txt')
True

If it exists, os.path.isdir checks whether it’s a directory:

>>> os.path.isdir('memo.txt')
False
>>> os.path.isdir('music')
True

Similarly, os.path.isfile checks whether it’s a file.

os.listdir returns a list of the files (and other directories) in the given directory:

>>> os.listdir(cwd)
['music', 'photos', 'memo.txt']

To demonstrate these functions, the following example “walks” through a directory,
prints the names of all the files, and calls itself recursively on all the directories.

def walk(dir):
for name in os.listdir(dir):

path = os.path.join(dir, name)
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if os.path.isfile(path):
print(path)

else:
walk(path)

os.path.join takes a directory and a file name and joins them into a complete path.
Exercise 11.1. Modify walk so that instead of printing the names of the files, it returns
a list of names.

11.5 Catching exceptions
A lot of things can go wrong when you try to read and write files. If you try to open a
file that doesn’t exist, you get an IOError:

>>> fin = open('bad_file')
IOError: [Errno 2] No such file or directory: 'bad_file'

If you don’t have permission to access a file:

>>> fout = open('/etc/passwd', 'w')
IOError: [Errno 13] Permission denied: '/etc/passwd'

And if you try to open a directory for reading, you get

>>> fin = open('/home')
IOError: [Errno 21] Is a directory

To avoid these errors, you could use functions like os.path.exists and
os.path.isfile, but it would take a lot of time and code to check all the possibil-
ities (based on the last error message, there are at least 21 things that can go wrong).

It is better to go ahead and try, and deal with problems if they happen, which is exactly
what the try statement does. The syntax is similar to an if statement:

try:
fin = open('bad_file')
for line in fin:

print(line)
fin.close()

except:
print('Something went wrong.')

Python starts by executing the try clause. If all goes well, it skips the except clause
and proceeds. If an exception occurs, it jumps out of the try clause and executes the
except clause.

Handling an exception with a try statement is called catching an exception. In this
example, the except clause prints an error message that is not very helpful. In general,
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catching an exception gives you a chance to fix the problem, or try again, or at least
end the program gracefully.

11.6 Pickling
If you want to store the state of a program, and not just strings to a file, the pickle
module can help. It translates almost any type of object into a string, suitable for
storage in a database, and then translates strings back into objects.

pickle.dumps takes an object as a parameter and returns a string representation
(dumps is short for “dump string”):

>>> import pickle
>>> t = [1, 2, 3]
>>> pickle.dumps(t)
b'\x80\x03]q\x00(K\x01K\x02K\x03e.'

The format isn’t obvious to human readers; it is meant to be easy for pickle to inter-
pret. pickle.loads (“load string”) reconstitutes the object:

>>> t1 = [1, 2, 3]
>>> s = pickle.dumps(t1)
>>> t2 = pickle.loads(s)
>>> print(t2)
[1, 2, 3]

Although the new object has the same value as the old, it is not (in general) the same
object:

>>> t == t2
True
>>> t is t2
False

In other words, pickling and then unpickling has the same effect as copying the object.

You can use pickle to store non-strings in a database. In fact, this combination is so
common that it has been encapsulated in a module called shelve.

11.7 Glossary
persistent: Pertaining to a program that runs indefinitely and keeps at least some of

its data in permanent storage.

format operator: An operator, %, that takes a format string and a tuple and generates a
string that includes the elements of the tuple formatted as specified by the format
string.
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format string: A string, used with the format operator, that contains format se-
quences.

format sequence: A sequence of characters in a format string, like %d that specifies
how a value should be formatted.

text file: A sequence of characters stored in non-volatile storage like a hard drive.

directory: A named collection of files, also called a folder.

path: A string that identifies a file.

relative path: A path that starts from the current directory.

absolute path: A path that starts from the topmost directory in the file system.

catch: To prevent an exception from terminating a program using the try and except
statements.
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Chapter 12

Dictionaries

A dictionary is like a list, but more general. In a list, the indices have to be integers;
in a dictionary they can be (almost) any type.

You can think of a dictionary as a mapping between a set of indices and a set of values.
Each index, which is called a key, corresponds to a value. The association of a key and
a value is called a key-value pair or sometimes an item.

As an example, we will build a dictionary that maps from English words to Spanish
words, so the keys and the values are all strings.

The function dict creates a new dictionary with no items.

>>> eng2sp = dict()
>>> print(eng2sp)
{}

The squiggly-brackets, {}, represent an empty dictionary. To add items to the dictio-
nary, you can use square brackets:

>>> eng2sp['one'] = 'uno'

This line creates an item that maps from the key ’one’ to the value ’uno’. If we print
the dictionary again, we see a key-value pair with a colon between the key and value:

>>> print(eng2sp)
{'one': 'uno'}

This output format is also an input format. For example, you can create a new dictio-
nary with three items:

>>> eng2sp = {'one': 'uno', 'two': 'dos', 'three': 'tres'}
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But if you print eng2sp, you might be surprised:

>>> print(eng2sp)
{'one': 'uno', 'three': 'tres', 'two': 'dos'}

The key-value pairs are not in order, but that’s not a problem because the elements of a
dictionary are never indexed with integer indices. Instead, you use the keys to look up
the corresponding values:

>>> print(eng2sp['two'])
'dos'

The key ’two’ always maps to the value ’dos’ so the order of the items doesn’t matter.

If the key isn’t in the dictionary, you get an exception:

>>> print(eng2sp['four'])
KeyError: 'four'

The len function works on dictionaries; it returns the number of key-value pairs:

>>> len(eng2sp)
3

The in operator works on dictionaries; it tells you whether something appears as a key
in the dictionary (appearing as a value is not good enough).

>>> 'one' in eng2sp
True
>>> 'uno' in eng2sp
False

To see whether something appears as a value in a dictionary, you can use the method
values, and then use the in operator:

>>> vals = eng2sp.values()
>>> 'uno' in vals
True

The in operator uses different algorithms for lists and dictionaries. For lists, it uses a
search algorithm, as in Section 9.3. As the list gets longer, the search time gets longer
in direct proportion. For dictionaries, Python uses an algorithm called a hashtable that
has a remarkable property: the in operator takes about the same amount of time no
matter how many items there are in a dictionary. I won’t explain how that’s possible,
but you can look it up.

12.1 Dictionary as a set of counters
Suppose you are given a string and you want to count how many times each letter
appears. There are several ways you could do it:
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1. You could create 26 variables, one for each letter of the alphabet. Then you could
traverse the string and, for each character, increment the corresponding counter,
probably using a chained conditional.

2. You could create a list with 26 elements. Then you could convert each character
to a number (using the built-in function ord), use the number as an index into
the list, and increment the appropriate counter.

3. You could create a dictionary with characters as keys and counters as the corre-
sponding values. The first time you see a character, you would add an item to
the dictionary. After that you would increment the value of an existing item.

Each of these options performs the same computation, but each of them implements
that computation in a different way.

An implementation is a way of performing a computation; some implementations are
better than others. For example, an advantage of the dictionary implementation is that
we don’t have to know ahead of time which letters appear in the string and we only
have to make room for the letters that do appear.

Here is what the code might look like:

def histogram(s):
d = {}
for c in s:

if c not in d:
d[c] = 1

else:
d[c] += 1

return d

The name of the function is histogram, which is a statistical term for a set of counters
(or frequencies).

The first line of the function creates an empty dictionary. The for loop traverses the
string. Each time through the loop, if the character c is not in the dictionary, we create
a new item with key c and the initial value 1 (since we have seen this letter once). If c
is already in the dictionary we increment d[c].

Here’s how it works:

>>> h = histogram('brontosaurus')
>>> print(h)
{'a': 1, 'b': 1, 'o': 2, 'n': 1, 's': 2, 'r': 2, 'u': 2, 't': 1}

The histogram indicates that the letters ’a’ and ’b’ appear once each; ’o’ appears
twice, and so on.
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Exercise 12.1. Dictionaries have a method called get that takes a key and a default
value. If the key appears in the dictionary, get returns the corresponding value; other-
wise it returns the default value. For example:

>>> h = histogram('a')
>>> print(h)
{'a': 1}
>>> h.get('a', 0)
1
>>> h.get('b', 0)
0

Use get to write histogram more concisely. You should be able to eliminate the if
statement.

12.2 Looping and dictionaries
If you use a dictionary in a for statement, it traverses the keys of the dictionary. For
example, print hist prints each key and the corresponding value:

def print_hist(h):
for c in h:

print(c, h[c])

Here’s what the output looks like:

>>> h = histogram('parrot')
>>> print_hist(h)
a 1
p 1
r 2
t 1
o 1

Again, the keys are in no particular order.
Exercise 12.2. Dictionaries have a method called keys that returns the keys of the
dictionary, in no particular order, as a list.

Modify print hist to print the keys and their values in alphabetical order, using keys
and sort.

12.3 Reverse lookup
Given a dictionary d and a key k, it is easy to find the corresponding value v = d[k].
This operation is called a lookup.
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But what if you have v and you want to find k? You have two problems: first, there
might be more than one key that maps to the value v. Depending on the application,
you might be able to pick one, or you might have to make a list that contains all of
them. Second, there is no simple syntax to do a reverse lookup; you have to search.

Here is a function that takes a value and returns the first key that maps to that value:

def reverse_lookup(d, v):
for k in d:

if d[k] == v:
return k

raise ValueError

This function is yet another example of the search pattern we have seen before, but
it uses a feature we haven’t seen before, raise. The raise statement causes an ex-
ception; in this case it causes a ValueError, which generally indicates that there is
something wrong with the value of a parameter.

If we get to the end of the loop, that means v doesn’t appear in the dictionary as a value,
so we raise an exception.

Here is an example of a successful reverse lookup:

>>> h = histogram('parrot')
>>> k = reverse_lookup(h, 2)
>>> print(k)
r

And an unsuccessful one:

>>> k = reverse_lookup(h, 3)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "<stdin>", line 5, in reverse_lookup

ValueError

The result when you raise an exception is the same as when Python raises one: it prints
a traceback and an error message.

The raise statement takes a detailed error message as an optional argument. For
example:

>>> raise ValueError, 'value does not appear in the dictionary'
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: value does not appear in the dictionary

A reverse lookup is much slower than a forward lookup; if you have to do it often, or
if the dictionary gets big, the performance of your program will suffer.
Exercise 12.3. Modify reverse lookup so that it builds and returns a list of all keys
that map to v, or an empty list if there are none.
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12.4 Dictionaries and lists

Lists can appear as values in a dictionary. For example, if you were given a dictionary
that maps from letters to frequencies, you might want to invert it; that is, create a
dictionary that maps from frequencies to letters. Since there might be several letters
with the same frequency, each value in the inverted dictionary should be a list of letters.

Here is a function that inverts a dictionary:

def invert_dict(d):
inv = {}
for key in d:

val = d[key]
if val not in inv:

inv[val] = [key]
else:

inv[val].append(key)
return inv

Each time through the loop, key gets a key from d and val gets the corresponding
value. If val is not in inv, that means we haven’t seen it before, so we create a new
item and initialize it with a singleton (a list that contains a single element). Otherwise
we have seen this value before, so we append the corresponding key to the list.

Here is an example:

>>> hist = histogram('parrot')
>>> print(hist)
{'a': 1, 'p': 1, 'r': 2, 't': 1, 'o': 1}
>>> inv = invert_dict(hist)
>>> print(inv)
{1: ['a', 'p', 't', 'o'], 2: ['r']}

And here is a diagram showing hist and inv:
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A dictionary is represented as a box with the type dict above it and the key-value pairs
inside. If the values are integers, floats or strings, I usually draw them inside the box,
but I usually draw lists outside the box, just to keep the diagram simple.

Lists can be values in a dictionary, as this example shows, but they cannot be keys.
Here’s what happens if you try:

>>> t = [1, 2, 3]
>>> d = {}
>>> d[t] = 'oops'
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: list objects are unhashable

I mentioned earlier that a dictionary is implemented using a hashtable and that means
that the keys have to be hashable.

A hash is a function that takes a value (of any kind) and returns an integer. Dictionaries
uses these integers, called hash values, to store and look up key-value pairs.

This system works fine if the keys are immutable. But if the keys are mutable, like lists,
bad things happen. For example, when you create a key-value pair, Python hashes the
key and stores it in the corresponding location. If you modify the key and then hash
it again, it would go to a different location. In that case you might have two entries
for the same key, or you might not be able to find a key. Either way, the dictionary
wouldn’t work correctly.

That’s why the keys have to be hashable, and why mutable types like lists aren’t. The
simplest way to get around this limitation is to use tuples.

Since dictionaries are mutable, they can’t be used as keys, but they can be used as
values.
Exercise 12.4. Read the documentation of the dictionary method setdefault and use
it to write a more concise version of invert dict.

12.5 Debugging
As you work with bigger datasets it can become unwieldy to debug by printing and
checking data by hand. Here are some suggestions for debugging large datasets:

Scale down the input: If possible, reduce the size of the dataset. For example if the
program reads a text file, start with just the first 10 lines, or with the smallest
example you can find. You can either edit the files themselves, or (better) modify
the program so it reads only the first n lines.

If there is an error, you can reduce n to the smallest value that manifests the error,
and then increase it gradually as you find and correct errors.
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Check summaries and types: Instead of printing and checking the entire dataset,
consider printing summaries of the data: for example, the number of items in
a dictionary or the total of a list of numbers.

A common cause of run-time errors is a value that is not the right type. For
debugging this kind of error, it is often enough to print the type of a value, which
is often smaller than the value itself.

Write self-checks: Sometimes you can write code to check for errors automatically.
For example, if you are computing the average of a list of number, you could
check that the result is not greater than the largest element in the list or less than
the smallest. This is called a “sanity check” because it detects results that are
“insane.”

Another kind of check compares the results of two different computations to see
if they are consistent. This is called a “consistency check.”

12.6 Glossary
dictionary: A mapping from a set of keys to their corresponding values.

key-value pair: The representation of the mapping from a key to a value.

item: Another name for a key-value pair.

key: An object that appears in a dictionary as the first part of a key-value pair.

value: An object that appears in a dictionary as the second part of a key-value pair.
This is more specific than our previous use of the word “value.”

implementation: A way of performing a computation.

hashtable: The algorithm used to implement Python dictionaries.

hash function: A function used by a hashtable to compute the location for a key.

hashable: A type that has a hash function. Immutable types like integers, floats and
strings are hashable; mutable types like lists and dictionaries are not.

lookup: A dictionary operation that takes a key and finds the corresponding value.

reverse lookup: A dictionary operation that takes a value and finds one or more keys
that map to it.

singleton: A list (or other sequence) with a single element.

call graph: A diagram that shows every frame created during the execution of a pro-
gram, with an arrow from each caller to each callee.

histogram: A set of counters.
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hint: A computed value stored to avoid unnecessary future computation.

global variable: A variable defined outside a function. Global variables can be ac-
cessed from any function.

12.7 Exercises
Exercise 12.5. Two words are anagrams if you can rearrange the letters from one to
spell the other. Write a function called is anagram that takes two strings and returns
True if they are anagrams.
Exercise 12.6. Write a function named has duplicates that takes a list as a param-
eter and that returns True if there is any object that appears more than once in the list,
and False otherwise.



120 Chapter 12. Dictionaries



Part III

Object-Oriented Programming





Chapter 13

Classes and objects

13.1 User-defined types
We have used many of Python’s built-in types; now we are going to define a new
type. As an example, we will create a type called Point that represents a point in
two-dimensional space.

In mathematical notation, points are often written in parentheses with a comma sepa-
rating the coordinates. For example, (0,0) represents the origin, and (x,y) represents
the point x units to the right and y units up from the origin.

There are several ways we might represent points in Python:

• We could store the coordinates separately in two variables, x and y.

• We could store the coordinates as elements in a list or tuple.

• We could create a new type to represent points as objects.

Creating a new type is (a little) more complicated than the other options, but it has
advantages that will be apparent soon.

A user-defined type is also called a class. A class definition looks like this:

class Point:
"""represents a point in 2-D space"""

This header indicates that the new class is called Point. The body is a docstring that
explains what the class is for. You can define variables and functions inside a class
definition, but we will get back to that later.

Defining a class named Point creates a class object, also named Point.



124 Chapter 13. Classes and objects

>>> print(Point)
<class __main__.Point>
>>> type(Point)
<class 'type'>

Because Point is defined at the top level, its “full name” is main .Point.

The class object is like a factory for creating objects. To create a Point, you call Point
as if it were a function.

>>> blank = Point()
>>> print(blank)
<__main__.Point instance at 0xb7e9d3ac>

The return value is a reference to a Point object, which we assign to blank. Creating a
new object is called instantiation, and the object is an instance of the class.

13.2 Attributes
You can assign values to an instance using dot notation:

>>> blank.x = 3.0
>>> blank.y = 4.0

This syntax is similar to the syntax for selecting a variable from a module, such as
math.pi or string.uppercase. In this case, though, we are assigning values to
named elements of an object. These elements are called attributes.

As a noun, “AT-trib-ute” is pronounced with emphasis on the first syllable, as opposed
to “a-TRIB-ute,” which is a verb.

The following diagram shows the result of these assignments. A state diagram that
shows an object and its attributes is called an object diagram:

x

y

3.0

4.0

blank

Point

The variable blank refers to a Point object, which contains two attributes. Each at-
tribute refers to a floating-point number.

We can read the value of an attribute using the same syntax:

>>> print(blank.y)
4.0
>>> x = blank.x
>>> print(x)
3.0
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The expression blank.x means, “Go to the object blank refers to and get the value
of x.” In this case, we assign that value to a variable named x. There is no conflict
between the variable x and the attribute x.

You can use dot notation as part of any expression. For example:

>>> print('(%g, %g)' % (blank.x, blank.y))
(3.0, 4.0)
>>> distance = math.sqrt(blank.x**2 + blank.y**2)
>>> print(distance)
5.0

You can pass an instance as an argument in the usual way. For example:

def print_point(p):
print('(%g, %g)' % (p.x, p.y))

print point takes a point as an argument and displays it in mathematical notation. To
invoke it, you can pass blank as an argument:

>>> print_point(blank)
(3.0, 4.0)

Inside the function, p is an alias for blank, so if the function modifies p, blank
changes.
Exercise 13.1. Write a function called distance that it takes two Points as arguments
and returns the distance between them.

13.3 Rectangles
Sometimes it is obvious what the attributes of an object should be, but other times you
have to make decisions. For example, imagine you are designing a class to represent
rectangles. What attributes would you use to specify the location and size of a rectan-
gle? You can ignore angle; to keep things simple, assume that the rectangle is either
vertical or horizontal.

There are at least two possibilities:

• You could specify one corner of the rectangle (or the center), the width, and the
height.

• You could specify two opposing corners.

At this point it is hard to say whether either is better than the other, so we’ll implement
the first one, just as an example.

Here is the class definition:
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class Rectangle:
"""represent a rectangle.

attributes: width, height, corner.
"""

The docstring lists the attribute names. width and height are numbers; corner is a
Point object that specifies the lower-left corner.

To represent a rectangle, you have to instantiate a Rectangle object and assign values
to the attributes:

box = Rectangle()
box.width = 100.0
box.height = 200.0
box.corner = Point()
box.corner.x = 0.0
box.corner.y = 0.0

The expression box.corner.x means, “Go to the object box refers to and select the
attribute named corner; then go to that object and select the attribute named x.”

The figure shows the state of this object:
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13.4 Instances as return values
Functions can return instances. For example, find center takes a Rectangle as
an argument and returns a Point that contains the coordinates of the center of the
Rectangle:

def find_center(box):
p = Point()
p.x = box.corner.x + box.width/2.0
p.y = box.corner.y + box.height/2.0
return p

Here is an example that passes box as an argument and assign the resulting Point to
center:

>>> center = find_center(box)
>>> print_point(center)
(50.0, 100.0)
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13.5 Objects are mutable
We can change the state of an object by making an assignment to one of its attributes.
For example, to change the size of a rectangle without changing its position, you can
modify the values of width and height:

box.width = box.width + 50
box.height = box.width + 100

You can also write functions that modify objects. For example, grow rectangle takes
a Rectangle object and two numbers, dwidth and dheight, and adds the numbers to
the width and height of the rectangle:

def grow_rectangle(rect, dwidth, dheight) :
rect.width += dwidth
rect.height += dheight

Here is an example that demonstrates the effect:

>>> print(box.width)
100.0
>>> print(box.height)
200.0
>>> grow_rectangle(box, 50, 100)
>>> print(box.width)
150.0
>>> print(box.height)
300.0

Inside the function, rect is an alias for box, so if the function modifies rect, box
changes.
Exercise 13.2. Write a function named move rectangle that takes a Rectangle and
two numbers named dx and dy. It should change the location of the rectangle by adding
dx to the x coordinate of corner and adding dy to the y coordinate of corner.

13.6 Copying
Aliasing can make a program difficult to read because changes made in one place might
have unexpected effects in another place. It is hard to keep track of all the variables
that might refer to a given object.

Copying an object is often an alternative to aliasing. The copy module contains a
function called copy that can duplicate any object:

>>> p1 = Point()
>>> p1.x = 3.0
>>> p1.y = 4.0
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>>> import copy
>>> p2 = copy.copy(p1)

p1 and p2 contain the same data, but they are not the same Point.

>>> print_point(p1)
(3.0, 4.0)
>>> print_point(p2)
(3.0, 4.0)
>>> p1 is p2
False
>>> p1 == p2
False

The is operator indicates that p1 and p2 are not the same object, which is what we
expected. But you might have expected == to yield True because these points contain
the same data. In that case, you will be disappointed to learn that for instances, the
default behavior of the == operator is the same as the is operator; it checks object
identity, not object equivalence.

This behavior can be changed, so for many objects defined in Python modules, the ==
operator checks equivalence (in whatever sense is appropriate). But the default is to
check identity.

If you use copy.copy to duplicate a Rectangle, you will find that it copies the Rectan-
gle object but not the embedded Point.

>>> box2 = copy.copy(box)
>>> box2 is box
False
>>> box2.corner is box.corner
True

Here is what the object diagram looks like:
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This operation is called a shallow copy because it copies the object and any references
it contains, but not the embedded objects.

For most applications, this is not what you want. In this example, invoking
grow rectangle on one of the Rectangles would not affect the other, but invoking
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move rectangle on either would affect both! This behavior is confusing and error-
prone.

Fortunately, the copy module contains a method named deepcopy that copies not only
the object but also the objects it refers to, and the objects they refer to, and so on. You
will not be surprised to learn that this operation is called a deep copy.

>>> box3 = copy.deepcopy(box)
>>> box3 is box
False
>>> box3.corner is box.corner
False

box3 and box are completely separate objects.
Exercise 13.3. Write a version move rectangle that it creates and returns a new
Rectangle instead of modifying the old one.

13.7 Debugging
When you start working with objects, you are likely to encounter some new exceptions.
If you try to access an attribute that doesn’t exist, you get an AttributeError:

>>> p = Point(3, 4)
>>> print(p.z)
AttributeError: Point instance has no attribute 'z'

If you are not sure what class an object is, you can ask:

>>> type(p)
<class 'instance'>

This result tells us that p is an object, but not what kind. But all objects have a special
attribute named class that refers to the object’s particular class name.

>>> print(p.__class__)
__main__.Point

If you are not sure whether an object has a particular attribute, you can use the built-in
function hasattr:

>>> hasattr(p, 'x')
True
>>> hasattr(p, 'z')
False

The first argument can be any object; the second argument is a string that contains the
name of the attribute.
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Another way to access the attributes of an object is through the special attribute
dict , which is a dictionary that maps from attribute names (as strings) and val-

ues:

>>> print(p.__dict__)
{'y': 4, 'x': 3}

For purposes of debugging, you might find it useful to keep this function handy:

def print_attributes(obj):
for attr in obj.__dict__:

print(attr, getattr(obj, attr))

print attributes traverses the items in the object’s dictionary print each attrbute
name and its corresponding value.

The built-in function getattr takes an object and an attribute name (as a string) and
returns the attribute’s value.

13.8 Glossary
class: A user-defined type. A class definition creates a new class object.

class object: An object that contains information about a user-defined time. The class
object can be used to create instances of the type.

instance: An object that belongs to a class.

attribute: One of the named values associated with an object.

shallow copy: To copy the contents of an object, including any references to embed-
ded objects; implemented by the copy function in the copy module.

deep copy: To copy the contents of an object as well as any embedded objects, and any
objects embedded in them, and so on; implemented by the deepcopy function in
the copy module.

object diagram: A diagram that shows objects, their attributes, and the values of the
attributes.

13.9 Exercises



Chapter 14

Classes and functions

14.1 Time

As another example of a user-defined type, we’ll define a class called Time that records
the time of day. The class definition looks like this:

class Time:
"""represents the time of day

attributes: hour, minute, second"""

We can create a new Time object and assign attributes for hours, minutes, and seconds:

time = Time()
time.hour = 11
time.minute = 59
time.second = 30

The state diagram for the Time object looks like this:

59
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hour

minute

second

11

Time

time

Exercise 14.1. Write a function print time that takes a Time object and prints it in
the form hour:minute:second.
Exercise 14.2. Write a boolean function after that takes two Time objects, t1 and
t2, and returns True if t1 follows t2 chronologically and False otherwise.
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14.2 Pure functions
In the next few sections, we’ll write two versions of a function called add time, which
calculates the sum of two Time objects. They demonstrate two kinds of functions: pure
functions and modifiers. They also demonstrate a development plan I’ll call prototype
and patch, which is a way of tackling a complex problem by starting with a simple
prototype and incrementally dealing with the complications.

Here is a simple prototype of add time:

def add_time(t1, t2):
sum = Time()
sum.hour = t1.hour + t2.hour
sum.minute = t1.minute + t2.minute
sum.second = t1.second + t2.second
return sum

The function creates a new Time object, initializes its attributes, and returns a reference
to the new object. This is called a pure function because it does not modify any of the
objects passed to it as arguments and it has no side effects, such as displaying a value
or getting user input.

To test this function, I’ll create two Time objects: start contains the start time of a
movie, like Monty Python and the Holy Grail, and duration contains the run time of
the movie, which is one hour 35 minutes.

add time figures out when the movie will be done.

>>> start = Time()
>>> start.hour = 9
>>> start.minute = 45
>>> start.second = 0

>>> duration = Time()
>>> duration.hour = 1
>>> duration.minute = 35
>>> duration.second = 0

>>> done = add_time(start, duration)
>>> print_time(done)
10:80:00

The result, 10:80:00 might not be what you were hoping for. The problem is that this
function does not deal with cases where the number of seconds or minutes adds up
to more than sixty. When that happens, we have to “carry” the extra seconds into the
minute column or the extra minutes into the hour column.

Here’s an improved version:
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def add_time(t1, t2):
sum = Time()
sum.hour = t1.hour + t2.hour
sum.minute = t1.minute + t2.minute
sum.second = t1.second + t2.second

if sum.second >= 60:
sum.second -= 60
sum.minute += 1

if sum.minute >= 60:
sum.minute -= 60
sum.hour += 1

return sum

Although this function is correct, it is starting to get big. We will see a shorter alterna-
tive later.

14.3 Modifiers
Sometimes it is useful for a function to modify the objects it gets as parameters. In
that case, the changes are visible to the caller. Functions that work this way are called
modifiers.

increment, which adds a given number of seconds to a Time object, can be written
naturally as a modifier. Here is a rough draft:

def increment(time, seconds):
time.second += seconds

if time.second >= 60:
time.second -= 60
time.minute += 1

if time.minute >= 60:
time.minute -= 60
time.hour += 1

The first line performs the basic operation; the remainder deals with the special cases
we saw before.

Is this function correct? What happens if the parameter seconds is much greater than
sixty? In that case, it is not enough to carry once; we have to keep doing it until
time.second is less than sixty. One solution is to replace the if statements with
while statements. That would make the function correct, but not very efficient.
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Exercise 14.3. Write a correct version of increment that doesn’t contain any loops.

Anything that can be done with modifiers can also be done with pure functions. In
fact, some programming languages only allow pure functions. There is some evidence
that programs that use pure functions are faster to develop and less error-prone than
programs that use modifiers. But modifiers are convenient at times, and functional
programs tend to be less efficient.

In general, I recommend that you write pure functions whenever it is reasonable and
resort to modifiers only if there is a compelling advantage. This approach might be
called a functional programming style.
Exercise 14.4. Write a “pure” version of increment that creates and returns a new
Time object rather than modifying the parameter.

14.4 Prototyping versus planning
In this chapter, I demonstrated development plan called “prototype and patch.” For each
function, I wrote a rough draft that performed the basic calculation and then tested it,
correcting flaws along the way.

This approach can be effective, especially if you don’t yet have a deep understand-
ing of the problem. But incremental patching can generate code that is unnecessarily
complicated—since it deals with many special cases—and unreliable—since it is hard
to know if you have found all the errors.

An alternative is planned development, in which high-level insight into the problem
can make the programming much easier. In this case, the insight is that a Time object
is really a three-digit number in base 60! The second attribute is the “ones column,”
the minute attribute is the “sixties column,” and the hour attribute is the “thirty-six
hundreds column.”

When we wrote add time and increment, we were effectively doing addition in base
60, which is why we had to carry from one column to the next.

This observation suggests another approach to the whole problem—we can convert
Time objects to integers and take advantage of the fact that the computer knows how to
do integer arithmetic.

Here is the function that converts Times to integers:

def time_to_int(time):
minutes = time.hour * 60 + time.minute
seconds = minutes * 60 + time.second
return seconds

And here is the function that converts integers to Times (recall that divmod divides the
first argument by the second and returns the quotient and remainder as a tuple).
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def int_to_time(seconds):
time = Time()
minutes, time.second = divmod(seconds, 60)
time.hour, time.minute = divmod(minutes, 60)
return time

You might have to think a bit, and run some tests, to convince yourself that these func-
tions are correct. But once they are debugged, you can use them to rewrite add time:

def add_time(t1, t2):
seconds = time_to_int(t1) + time_to_int(t2)
return int_to_time(seconds)

This version is shorter than the original, and easier to verify.
Exercise 14.5. Rewrite increment using time to int and int to time.

In some ways, converting from base 60 to base 10 and back is harder than just dealing
with times. Base conversion is more abstract; our intuition for dealing with times is
better.

But if we have the insight to treat times as base 60 numbers and make the investment of
writing the conversion functions (time to int and int to time), we get a program
that is shorter, easier to read and debug, and more reliable.

It is also easier to add features later. For example, imagine subtracting two Times to
find the duration between them. The naı̈ve approach would be to implement subtraction
with borrowing. Using the conversion functions would be easier and more likely to be
correct.

Ironically, sometimes making a problem harder (or more general) makes it easier (be-
cause there are fewer special cases and fewer opportunities for error).

14.5 Glossary
prototype and patch: A development plan that involves writing a rough draft of a

program, testing, and correcting errors as they are found.

planned development: A development plan that involves high-level insight into the
problem and more planning than incremental development or prototype devel-
opment.

pure function: A function that does not modify any of the objects it receives as argu-
ments. Most pure functions are fruitful.

modifier: A function that changes one or more of the objects it receives as arguments.
Most modifiers are fruitless.

functional programming style: A style of program design in which the majority of
functions are pure.
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14.6 Exercises
Exercise 14.6. Write a function called mul time that takes a Time object and a number
and returns a new Time object that contains the product of the original Time and the
number.

Then use mul time to write a function that takes a Time object that represents the
finishing time in a race, and a number that represents the distance, and returns a Time
object that represents the average pace (time per mile).
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Classes and methods

15.1 Object-oriented features

Python is an object-oriented programming language, which means that it provides
features that support object-oriented programming.

It is not easy to define object-oriented programming, but we have already seen some of
its characteristics:

• Programs are made up of object definitions and function definitions, and most of
the computation is expressed in terms of operations on objects.

• Each object definition corresponds to some object or concept in the real world,
and the functions that operate on that object correspond to the ways real-world
objects interact.

For example, the Time class defined in Chapter 14 corresponds to the way people record
the time of day, and the functions we defined correspond to the kinds of things people
do with times. Similarly, the Point and Rectangle classes correspond to the mathe-
matical concepts of a point and a rectangle.

So far, we have not taken advantage of the features Python provides to support object-
oriented programming. Strictly speaking, these features are not necessary. For the most
part, they provide an alternative syntax for things we have already done, but in many
cases, the alternative is more concise and more accurately conveys the structure of the
program.

For example, in the Time program, there is no obvious connection between the class
definition and the function definitions that follow. With some examination, it is appar-
ent that every function takes at least one Time object as an argument.
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This observation is the motivation for methods; a method is a function that is asso-
ciated with a particular class. For example, we have seen methods for strings, lists,
dictionaries and tuples. In this chapter, we will define methods for user-defined types.

Methods are semantically the same as functions, but there are two syntactic differences:

• Methods are defined inside a class definition in order to make the relationship
between the class and the method explicit.

• The syntax for invoking a method is different from the syntax for calling a func-
tion.

In the next few sections, we will take the functions from the previous two chapters and
transform them into methods. This transformation is purely mechanical; you can do it
simply by following a sequence of steps. If you are comfortable converting from one
form to another, you will be able to choose the best form for whatever you are doing.

15.2 print time

In Chapter 14, we defined a class named Time and in Exercise 14.1, you wrote a func-
tion named print time:

class Time:
"""represents the time of day

attributes: hour, minute, second"""

def print_time(time):
print('%.2d:%.2d:%.2d' % (time.hour, time.minute, time.second))

To call this function, you have to pass a Time object as an argument:

>>> start = Time()
>>> start.hour = 9
>>> start.minute = 45
>>> start.second = 00
>>> print_time(start)
09:45:00

To make print time a method, all we have to do is move the function definition inside
the class definition. Notice the change in indentation.

class Time:
def print_time(time):

print('%.2d:%.2d:%.2d' % (time.hour, time.minute, time.second))

Now there are two ways to call print time. The first (and less common) way is to use
function syntax:
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>>> Time.print_time(start)
09:45:00

In this use of dot notation, Time is the name of the class, and print time is the name
of the method. start is passed as a parameter.

The second (and more concise) way is to use method syntax:

>>> start.print_time()
09:45:00

In this use of dot notation, print time is the name of the method (again), and start
is the object the method is invoked on, which is called the subject. Just as the subject
of a sentence is what the sentence is about, the subject of a method invocation is what
the method is about.

Inside the method, the subject is assigned to the first parameter, so in this case start
is assigned to time.

By convention, the first parameter of a method is called self, so it would be more
common to write print time like this:

class Time:
def print_time(self):

print('%.2d:%.2d:%.2d' % (self.hour, self.minute, self.second))

The reason for this convention is convoluted, but it is based on a useful metaphor:

The syntax for a function call, print time(start), suggests that the function is the
active agent. It says something like, “Hey print time! Here’s an object for you to
print.”

In object-oriented programming, the objects are the active agents. A method invocation
like start.print time() says “Hey start! Please print yourself.”

This change in perspective might be more polite, but it is not obvious that it is useful. In
the examples we have seen so far, it may not be. But sometimes shifting responsibility
from the functions onto the objects makes it possible to write more versatile functions,
and makes it easier to maintain and reuse code.
Exercise 15.1. Rewrite time to int (from Section 14.4) as a method. It is probably
not appropriate to rewrite int to time as a method; it’s not clear what object you
would invoke it on!

15.3 Another example

Here’s a version of increment (from Section 14.3) rewritten as a method:
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# inside class Time:

def increment(self, seconds):
seconds += self.time_to_int()
return int_to_time(seconds)

This version assumes that time to int is written as a method, as in Exercise 15.1.
Also, note that it is a pure function, not a modifier.

Here’s how you would invoke increment:

>>> start.print_time()
09:45:00
>>> end = start.increment(1337)
>>> end.print_time()
10:07:17

The subject, start, gets assigned to the first parameter, self. The argument, 1337,
gets assigned to the second parameter, seconds.

This mechanism can be confusing, especially if you make an error. For example, if you
invoke increment with two arguments, you get:

>>> end = start.increment(1337, 460)
TypeError: increment() takes exactly 2 arguments (3 given)

The error message is initially confusing, because there are only two arguments in paren-
theses. But the subject is also considered an argument, so all together that’s three.

15.4 A more complicated example
after (from Exercise 14.2) is slightly more complicated because it takes two Time
objects as parameters. In this case it is conventional to name the first parameter self
and the second parameter other:

# inside class Time:

def after(self, other):
return self.time_to_int() > other.time_to_int()

To use this method, you have to invoke it on one object and pass the other as an argu-
ment:

>>> end.after(start)
True

One nice thing about this syntax is that it has the same word order as English, subject-
verb-object.
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15.5 The init method
The init method (short for “initialization”) is a special method that gets invoked when
an object is instantiated. Its full name is init (two underscore characters, followed
by init, and then two more underscores). An init method for the Time class might
look like this:

# inside class Time:

def __init__(self, hour=0, minute=0, second=0):
self.hour = hour
self.minute = minute
self.second = second

It is common for the parameters of init to have the same names as the attributes.
The statement

self.hour = hour

stores the value of the parameter hour as an attribute in the new Time object self.

The parameters are optional, so if you call Time with no arguments, you get the default
values.

>>> time = Time()
>>> time.print_time()
00:00:00

If you provide one argument, it overrides hour:

>>> time = Time (9)
>>> time.print_time()
09:00:00

If you provide two arguments, they override hour and minute.

>>> time = Time(9, 45)
>>> time.print_time()
09:45:00

And if you provide three arguments, they override all three default values.
Exercise 15.2. Write an init method for the Point class that takes x and y as optional
parameters and assigns them to the corresponding attributes.

15.6 The str method
str is a special method name, like init , that is supposed to return a string

representation of an object.
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For example, here is a str method for Time objects:

# inside class Time:

def __str__(self):
return '%.2d:%.2d:%.2d' % (self.hour, self.minute, self.second)

When you print an object, Python invokes the str method:

>>> time = Time(9, 45)
>>> print(time)
09:45:00

When I write a new class, I almost always start by writing init , which makes it
easier to instantiate objects, and str , which is almost always useful for debugging.
Exercise 15.3. Write a str method for the Point class. Create a Point object and
print it.

15.7 Operator overloading
By defining other special methods, you can specify the behavior of operators on user-
defined types. For example, if you define an add method for the Time class, you can
use the + operator on Time objects.

Here is what the definition might look like:

# inside class Time:

def __add__(self, other):
seconds = self.time_to_int() + other.time_to_int()
return int_to_time(seconds)

And here is how you could use it:

>>> start = Time(9, 45)
>>> duration = Time(1, 35)
>>> print(start + duration)
11:20:00

When you apply the + operator to Time objects, Python invokes add . When you
print the result, Python invokes str . So there is quite a lot happening behind the
scenes!

Changing the behavior of an operator so that it works with user-defined types is called
operator overloading. For every operator in Python there is a corresponding special
method, like add .
Exercise 15.4. Write an add method for the Point class.
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15.8 Type-based dispatch
In the previous section we added two Time objects, but you also might want to add an
integer to a Time object. The following is an alternative version of add that checks
the type of other and invokes either add time or increment:

# inside class Time:

def __add__(self, other):
if isinstance(other, Time):

return self.add_time(other)
else:

return self.increment(other)

def add_time(self, other):
seconds = self.time_to_int() + other.time_to_int()
return int_to_time(seconds)

def increment(self, seconds):
seconds += self.time_to_int()
return int_to_time(seconds)

The built-in function isinstance takes a value and a class object, and returns True if
the value is an instance of the class.

If other is a Time object, add invokes add time. Otherwise it assumes that the
seconds parameter is a number and invokes increment. This operation is called a
type-based dispatch because it dispatches the computation to different methods based
on the type of the arguments.

Here are examples that use the + operator with different types:

>>> start = Time(9, 45)
>>> duration = Time(1, 35)
>>> print(start + duration)
11:20:00
>>> print(start + 1337)
10:07:17

Unfortunately, this implementation of addition is not commutative. If the integer is the
first operand, you get

>>> print(1337 + start)
TypeError: unsupported operand type(s) for +: 'int' and 'instance'

The problem is, instead of asking the Time object to add an integer, Python is asking
an integer to add a Time object, and it doesn’t know how to do that. But there is a
clever solution for this problem, the radd method, which stands for “right-side add.”
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This method is invoked when a Time object appears on the right side of the + operator.
Here’s the definition:

# inside class Time:

def __radd__(self, other):
return self.__add__(other)

And here’s how it’s used:

>>> print(1337 + start)
10:07:17
Exercise 15.5. Write an add method for Points that works with either a Point object or
a tuple:

• If the second operand is a Point, the method should return a new Point whose x
coordinate is the sum of the x coordinates of the operands, and likewise for the y
coordinates.

• If the second operand is a tuple, the method should add the first element of the
tuple to the x coordinate and the second element to the y coordinate, and return
a new Point with the result.

15.9 Polymorphism

Type-based dispatch is useful when it is necessary, but (fortunately) it is not always
necessary. Often you can avoid it by writing functions that work correctly for argu-
ments with different types.

Many of the functions we wrote for strings will actually work for any kind of sequence.
For example, in Section 12.1 we used histogram to count the number of times each
letter appears in a word.

def histogram(s):
d = {}
for c in s:

if c not in d:
d[c] = 1

else:
d[c] = d[c]+1

return d

This function also works for lists, tuples, and even dictionaries, as long as the elements
of s are hashable, so they can be used as keys in d.
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>>> t = ['spam', 'egg', 'spam', 'spam', 'bacon', 'spam']
>>> histogram(t)
{'bacon': 1, 'egg': 1, 'spam': 4}

Functions that can work with several types are called polymorphic.

Many of the built-in functions are polymorphic. For example, sum works with any kind
of sequence, as long as the elements support the addition operator.

>>> t = [1, 2.0, 42L]
>>> print(sum(t))
45.0

Since Time objects provide an add method, they work with sum:

>>> t1 = Time(7, 43)
>>> t2 = Time(7, 41)
>>> t3 = Time(7, 37)
>>> total = sum([t1, t2, t3])
>>> print(total)
23:01:00

In general, if all of the operations inside a function work with a given type, then the
function works with that type.

The best kind of polymorphism is the unintentional kind, where you discover that a
function you have already written can be applied to a type you never planned for.

15.10 Exercises
Exercise 15.6. Write a definition for a class named Kangaroo with the following meth-
ods:

1. An init method that initializes an attribute named pouch contents to an
empty list.

2. A method named put in pouch that takes an object of any type and adds it to
pouch contents.

Test your code by creating two Kangaroo objects, assigning them to variables named
kanga and roo, and then adding roo to the contents of kanga’s pouch.

15.11 Glossary
object-oriented language: A language that provides features, such as user-defined

classes and inheritance, that facilitate object-oriented programming.
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object-oriented programming: A style of programming in which data and the oper-
ations that manipulate it are organized into classes and methods.

method: A function that is defined inside a class definition and is invoked on instances
of that class.

subject: The object a method is invoked on.

operator overloading: Changing the behavior of an operator like + so it works with a
user-defined type.

type-based dispatch: A programming pattern that checks the type of an operand and
invokes different functions for different types.

polymorphic: Pertaining to a function that can work with more than one type.
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Inheritance

In this chapter we will develop classes to represent playing cards, decks of cards, and
poker hands. If you don’t play poker, don’t worry; I’ll tell you what you need to know
for the exercises.

But if you are not familiar with common playing cards, now would be a good time to
get a deck, or else this chapter might not make much sense.

16.1 Card objects

There are fifty-two cards in a deck, each of which belongs to one of four suits and one
of thirteen ranks. The suits are Spades, Hearts, Diamonds, and Clubs (in descending
order in bridge). The ranks are Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King.
Depending on the game that you are playing, an Ace may be higher than King or lower
than 2.

If we want to define a new object to represent a playing card, it is obvious what the
attributes should be: rank and suit. It is not as obvious what type the attributes
should be. One possibility is to use strings containing words like "Spade" for suits and
"Queen" for ranks. One problem with this implementation is that it would not be easy
to compare cards to see which had a higher rank or suit.

An alternative is to use integers to encode the ranks and suits. In this context, “encode”
means that we are going to define a mapping between numbers and suits, or between
numbers and ranks. This kind of encoding is not meant to be a secret (that would be
“encryption”).

For example, this table shows the suits and the corresponding integer codes:
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Spades 7→ 3
Hearts 7→ 2
Diamonds 7→ 1
Clubs 7→ 0

This code makes it easy to compare cards; because higher suits map to higher numbers,
we can compare suits by comparing their codes.

The mapping for ranks is fairly obvious; each of the numerical ranks maps to the cor-
responding integer, and for face cards:

Jack 7→ 11
Queen 7→ 12
King 7→ 13

I am using the 7→ symbol to make is clear that these mappings are not part of the Python
program. They are part of the program design, but they don’t appear explicitly in the
code.

The class definition for Card looks like this:

class Card:
"""represents a standard playing card."""

def __init__(self, suit=0, rank=2):
self.suit = suit
self.rank = rank

As usual, the init method takes an optional parameter for each attribute. The default
card is the 2 of Clubs.

To create a Card, you call Card with the suit and rank of the card you want.

threeOfClubs = Card(3, 1)

In the next section we’ll figure out which card that is.

16.2 Class attributes

In order to print Card objects in a way that people can easily read, we need a mapping
from the integer codes to the corresponding ranks and suits. A natural way to do that
is with lists of strings. We assign these lists to class attributes:

# inside class Card:

suit_names = ['Clubs', 'Diamonds', 'Hearts', 'Spades']
rank_names = [None, 'Ace', '2', '3', '4', '5', '6', '7',
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'8', '9', '10', 'Jack', 'Queen', 'King']

def __str__(self):
return '%s of %s' % (Card.rank_names[self.rank],

Card.suit_names[self.suit])

Because suit names and rank names are defined outside of any method, they are class
attributes; that is, they are associated with the class Card rather than with a particular
Card instance.

Attributes like suit and rank are more precisely called instance attributes because
they are associated with a particular instance.

Both kinds of attribute are accessed using dot notation. For example, in str , self
is a Card object, and self.rank is its rank. Similarly, Card is a class object, and
Card.rank names is a list of strings associated with the class.

Every card has its own suit and rank, but there is only one copy of suit names and
rank names.

Finally, the expression Card.rank_names[self.rank] means “use the attribute rank
from the object self as an index into the list rank names from the class Card, and
select the appropriate string.”

The first element of rank names is None because there is no card with rank zero. By
including None as a place-keeper, we get a mapping with the nice property that the
index 2 maps to the string ’2’, and so on.

With the methods we have so far, we can create and print cards:

>>> card1 = Card(1, 11)
>>> print(card1)
Jack of Diamonds

Here is a diagram that shows the Card class object and one Card instance:
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rank

dict

card1

list
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list

rank_names

classobj

Card
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Card is a class object, so it has type classobj. card1 has type Card. (To save space,
I didn’t draw the contents of suit names and rank names).

16.3 Comparing cards

For built-in types, there are conditional operators (<, >, ==, etc.) that compare values
and determine when one is greater than, less than, or equal to another. For user-defined
types, we can override the behavior of the built-in operators by providing a method
named cmp .

The cmp method takes two parameters, self and other, and returns a positive number
if the first object is greater, a negative number if the second object is greater, and 0 if
they are equal to each other.

The correct ordering for cards is not obvious. For example, which is better, the 3 of
Clubs or the 2 of Diamonds? One has a higher rank, but the other has a higher suit. In
order to compare cards, you have to decide whether rank or suit is more important.

The answer might depend on what game you are playing, but to keep things simple,
we’ll make the arbitrary choice that suit is more important, so all of the Spades outrank
all of the Diamonds, and so on.

With that decided, we can write cmp :

# inside class Card:

def __cmp__(self, other):
# check the suits
if self.suit > other.suit: return 1
if self.suit < other.suit: return -1

# suits are the same... check ranks
if self.rank > other.rank: return 1
if self.rank < other.rank: return -1

# ranks are the same... it's a tie
return 0

You can write this more concisely using tuple comparison:

# inside class Card:

def __cmp__(self, other):
t1 = self.suit, self.rank
t2 = other.suit, other.rank
return cmp(t1, t2)
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The built-in function cmp has the same interface as the method cmp : it takes two
values and returns a positive number if the first is larger, a negative number of the
second is larger, and 0 if they are equal.
Exercise 16.1. Write a cmp method for Time objects. Hint: you can use tuple
comparison, but you also might consider using integer subtraction.

16.4 Decks
Now that we have Card objects, the next step is to define a class to represent decks.
Since a deck is made up of cards, a natural choice is for each Deck object to contain a
list of cards as an attribute.

The following is a class definition for Deck. The init method creates the attribute
cards and generates the standard set of fifty-two cards:

class Deck:

def __init__(self):
self.cards = []
for suit in range(4):

for rank in range(1, 14):
card = Card(suit, rank)
self.cards.append(card)

The easiest way to populate the deck is with a nested loop. The outer loop enumerates
the suits from 0 to 3. The inner loop enumerates the ranks from 1 to 13. Each iteration
of the inner loop creates a new Card with the current suit and rank, and appends it to
self.cards.

16.5 Printing the deck
Here is a str method for Deck:

#inside class Deck:

def __str__(self):
res = []
for card in self.cards:

res.append(str(card))
return '\n'.join(res)

This method demonstrates an efficient way to accumulate a large string, by building
a list of strings and then using join. The built-in function str invokes the str
method on each card and returns the string representation.
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Since we invoke join on a newline character, the cards are separated by newlines.
Here’s what the result looks like:

>>> deck = Deck()
>>> print(deck)
Ace of Clubs
2 of Clubs
3 of Clubs
...
10 of Spades
Jack of Spades
Queen of Spades
King of Spades

Even though the result appears on 52 lines, it is one long string that contains newlines.

16.6 Add, remove, shuffle and sort

To deal cards, we would like a method that removes a card from the deck and returns
it. The list method pop provides a convenient way to do that:

#inside class Deck:

def pop_card(self):
return self.cards.pop()

Since pop removes the last card in the list, we are in effect dealing from the bottom of
the deck.

To add a card, we can use the list method append:

#inside class Deck:

def add_card(self, card):
self.cards.append(card)

A method like this that uses another function without doing much real work is some-
times called a veneer. The metaphor comes from woodworking, where it is common
to glue a thin layer of good quality wood to the surface of a cheaper piece of wood.

In this case we are defining a “thin” method that expresses a list operation in terms that
are appropriate for decks.

As another example, we can write a Deck method named shuffle using the function
shuffle from the random module:
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# inside class Deck:

def shuffle(self):
random.shuffle(self.cards)

Don’t forget to import random.
Exercise 16.2. Write a Deck method named sort that uses the list method sort to sort
the cards in a Deck. sort uses the cmp method we defined to determine sort order.

16.7 Inheritance
The language feature most often associated with object-oriented programming is in-
heritance. Inheritance is the ability to define a new class that is a modified version of
an existing class.

It is called “inheritance” because the new class inherits the methods of the existing
class. Extending this metaphor, the existing class is called the parent class and the
new class is called the child.

As an example, let’s say we want a class to represent a “hand,” that is, the set of cards
held by one player. A hand is similar to a deck: both are made up of a set of cards, and
both require operations like adding and removing cards.

A hand is also different from a deck; there are operations we want for hands that don’t
make sense for a deck. For example, in poker we might compare two hands to see
which one wins. In bridge, we might compute a score for a hand in order to make a
bid.

This relationship between classes—similar, but different—lends itself to inheritance.

The definition of a child class is like other class definitions, but the name of the parent
class appears in parentheses:

class Hand(Deck):
"""represents a hand of playing cards"""

This definition indicates that Hand inherits from Deck; that means we can use methods
like pop card and add card for Hands as well as Decks.

Hand also inherits the init method from Deck, but it doesn’t really do what we want:
instead of populating the hand with 52 new cards, the init method for Hands should
initialize cards with an empty list.

If we provide an init method in the Hand class, it overrides the one in the Deck class:

# inside class Hand:

def __init__(self, label=''):
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self.cards = []
self.label = label

So when you create a Hand, Python invokes this init method:

>>> hand = Hand('new hand')
>>> print(hand.cards)
[]
>>> print(hand.label)
new hand

But the other methods are inherited from Deck, so we can use pop card and add card
to deal a card:

>>> deck = Deck()
>>> card = deck.pop_card()
>>> hand.add_card(card)
>>> print(hand)
King of Spades

The next natural step is to encapsulate this code in a method called move cards:

#inside class Deck:

def move_cards(self, hand, num):
for i in range(num):

hand.add_card(self.pop_card())

move cards takes two arguments, a Hand object and the number of cards to deal. It
modifies both self and hand, and returns None.

In some games, cards are moved from one hand to another, or from a hand back to the
deck. You can use move cards for any of these operations: self can be either a Deck
or a Hand, and hand, despite the name, can also be a Deck.
Exercise 16.3. Write a Deck method called deal hands that takes two parameters,
the number of hands and the number of cards per hand, and that creates new Hand
objects, deals the appropriate number of cards per hand, and returns a list of Hand
objects.

Inheritance is a useful feature. Some programs that would be repetitive without in-
heritance can be written more elegantly with it. Inheritance can facilitate code reuse,
since you can customize the behavior of parent classes without having to modify them.
In some cases, the inheritance structure reflects the natural structure of the problem,
which makes the program easier to understand.

On the other hand, inheritance can make programs difficult to read. When a method is
invoked, it is sometimes not clear where to find its definition. The relevant code may
be scattered among several modules. Also, many of the things that can be done using
inheritance can be done as well or better without it.
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16.8 Class diagrams
So far we have seen stack diagrams, which show the state of a program, and object
diagrams, which show the attributes of an object and their values. These diagrams
represent a snapshot in the execution of a program, so they change as the program
runs.

They are also highly detailed, and for some applications, too detailed. A class diagrams
is a more abstract representation of the structure of a program. Instead of showing
individual objects, it shows classes and the relationships between them.

There are several kinds of relationship between classes:

• Objects in one class might contain references to objects in another class. For
example, each Rectangle contains a reference to a Point, and each Deck contains
references to many Cards. This kind of relationship is called HAS-A, as in, “a
Rectangle has a Point.”

• One class might inherit from another. This relationship is called IS-A, as in, “a
Hand is a kind of a Deck.”

• Once class might depend on another in the sense that changes in one class would
require changes in the other.

A class diagram is a graphical representation of these relationships between classes.
For example, this diagram shows the relationships between Card, Deck and Hand.

Hand

Deck
*

Card

The arrow with a hollow triangle head represents an IS-A relationship; in this case it
indicates that Hand inherits from Deck.

The standard arrow head represents a HAS-A relationshop; in this case a Deck has
references to Card objects.

The star (*) near the arrow head is a multiplicity; it indicates how many Cards a Deck
has. A multiplicity can be a simple number, like 52, a range, like 5..7 or a star, which
indicates that a Deck can have any number of Cards.

16.9 Glossary
encode: To represent one set of values using another set of values by constructing a

mapping between them.
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class attribute: An attribute associated with a class object. Class attributes are defined
inside a class definition but outside any method.

instance attribute: An attribute associated with an instance of a class.

veneer: A method or function that provides a different interface to another function
without doing much computation.

inheritance: The ability to define a new class that is a modified version of a previously
defined class.

parent class: The class from which a child class inherits.

child class: A new class created by inheriting from an existing class; also called a
“subclass.”

IS-A relationship: The relationship between a child class and its parent class.

HAS-A relationship: The relationship between two classes where instances of one
class contain references to instances of the other.

class diagram: A diagram that shows the classes in a program and the relationships
between them.

multiplicity: A notation in a class diagram that shows, for a HAS-A relationship, how
many references there are to instances of another class.

16.10 Exercises
The following are the possible hands in poker, in increasing order of value (and de-
creasing order of probability):

pair: two cards with the same rank

two pair: two pairs of cards with the same rank

three of a kind: three cards with the same rank

straight: five cards with ranks in sequence (aces can be high or low, so Ace-2-3-4-5
is a straight and so is 10-Jack-Queen-King-Ace, but Queen-King-Ace-2-3 is
not.)

flush: five cards with the same suit

full house: three cards with one rank, two cards with another

four of a kind: four cards with the same rank

straight flush: five cards in sequence (as defined above) and with the same suit

The goal of these exercises is to estimate the probability of drawing these various
hands.
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1. Download the following files from thinkpython.com/code:

Card.py : A complete version of the Card, Deck and Hand classes in this chap-
ter.

PokerHand.py : An incomplete implementation of a class that represents a
poker hand, and some code that tests it.

2. If you run PokerHand.py, it deals six 7-card poker hands and checks to see if
any of them contains a flush. Read this code carefully before you go on.

3. Add methods to PokerHand.py named has pair, has twopair, etc. that return
True or False according to whether or not the hand meets the relevant criteria.
Your code should work correctly for “hands” that contain any number of cards
(although 5 and 7 are the most common sizes).

4. Write a method named classify that figures out the highest-value classification
for a hand and sets the label attribute accordingly. For example, a 7-card hand
might contain a flush and a pair; it should be labeled “flush”.

5. When you are convinced that your classification methods are working, the next
step is to estimate the probablities of the various hands. Write a function in
PokerHand.py that shuffles a deck of cards, divides it into hands, classifies the
hands, and counts the number of times various classifications appear.

6. Print a table of the classifications and their probabilities. Run your program
with larger and larger numbers of hands until the output values converge to a
reasonable degree of accuracy.
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Appendix A

Debugging

Different kinds of errors can occur in a program, and it is useful to distinguish among
them in order to track them down more quickly:

• Syntax errors are produced by Python when it is translating the source code into
byte code. They usually indicate that there is something wrong with the syntax
of the program. Example: Omitting the colon at the end of a def statement yields
the somewhat redundant message SyntaxError: invalid syntax.

• Runtime errors are produced by the runtime system if something goes wrong
while the program is running. Most runtime error messages include information
about where the error occurred and what functions were executing. Example:
An infinite recursion eventually causes a runtime error of “maximum recursion
depth exceeded.”

• Semantic errors are problems with a program that compiles and runs but doesn’t
do the right thing. Example: An expression may not be evaluated in the order
you expect, yielding an unexpected result.

The first step in debugging is to figure out which kind of error you are dealing with.
Although the following sections are organized by error type, some techniques are ap-
plicable in more than one situation.

A.1 Syntax errors
Syntax errors are usually easy to fix once you figure out what they are. Unfortu-
nately, the error messages are often not helpful. The most common messages are
SyntaxError: invalid syntax and SyntaxError: invalid token, neither of
which is very informative.
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On the other hand, the message does tell you where in the program the problem oc-
curred. Actually, it tells you where Python noticed a problem, which is not necessarily
where the error is. Sometimes the error is prior to the location of the error message,
often on the preceding line.

If you are building the program incrementally, you should have a good idea about where
the error is. It will be in the last line you added.

If you are copying code from a book, start by comparing your code to the book’s code
very carefully. Check every character. At the same time, remember that the book might
be wrong, so if you see something that looks like a syntax error, it might be.

Here are some ways to avoid the most common syntax errors:

1. Make sure you are not using a Python keyword for a variable name.

2. Check that you have a colon at the end of the header of every compound state-
ment, including for, while, if, and def statements.

3. Check that indentation is consistent. You may indent with either spaces or tabs
but it’s best not to mix them. Each level should be nested the same amount.

4. Make sure that any strings in the code have matching quotation marks.

5. If you have multiline strings with triple quotes (single or double), make sure
you have terminated the string properly. An unterminated string may cause an
invalid token error at the end of your program, or it may treat the following
part of the program as a string until it comes to the next string. In the second
case, it might not produce an error message at all!

6. An unclosed bracket—(, {, or [—makes Python continue with the next line as
part of the current statement. Generally, an error occurs almost immediately in
the next line.

7. Check for the classic = instead of == inside a conditional.

If nothing works, move on to the next section...

A.1.1 I can’t get my program to run no matter what I do.

If the compiler says there is an error and you don’t see it, that might be because you and
the compiler are not looking at the same code. Check your programming environment
to make sure that the program you are editing is the one Python is trying to run. If you
are not sure, try putting an obvious and deliberate syntax error at the beginning of the
program. Now run (or import) it again. If the compiler doesn’t find the new error, there
is probably something wrong with the way your environment is set up.

If this happens, one approach is to start again with a new program like “Hello, World!,”
and make sure you can get a known program to run. Then gradually add the pieces of
the new program to the working one.
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A.2 Runtime errors
Once your program is syntactically correct, Python can import it and at least start run-
ning it. What could possibly go wrong?

A.2.1 My program does absolutely nothing.

This problem is most common when your file consists of functions and classes but does
not actually invoke anything to start execution. This may be intentional if you only plan
to import this module to supply classes and functions.

If it is not intentional, make sure that you are invoking a function to start execution,
or execute one from the interactive prompt. Also see the “Flow of Execution” section
below.

A.2.2 My program hangs.

If a program stops and seems to be doing nothing, we say it is “hanging.” Often that
means that it is caught in an infinite loop or an infinite recursion.

• If there is a particular loop that you suspect is the problem, add a print statement
immediately before the loop that says “entering the loop” and another immedi-
ately after that says “exiting the loop.”

Run the program. If you get the first message and not the second, you’ve got an
infinite loop. Go to the “Infinite Loop” section below.

• Most of the time, an infinite recursion will cause the program to run for a while
and then produce a “RuntimeError: Maximum recursion depth exceeded” error.
If that happens, go to the “Infinite Recursion” section below.

If you are not getting this error but you suspect there is a problem with a recursive
method or function, you can still use the techniques in the “Infinite Recursion”
section.

• If neither of those steps works, start testing other loops and other recursive func-
tions and methods.

• If that doesn’t work, then it is possible that you don’t understand the flow of
execution in your program. Go to the “Flow of Execution” section below.

Infinite Loop

If you think you have an infinite loop and you think you know what loop is causing
the problem, add a print statement at the end of the loop that prints the values of the
variables in the condition and the value of the condition.

For example:
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while x > 0 and y < 0 :
# do something to x
# do something to y

print("x: ", x)
print("y: ", y)
print("condition: ", (x > 0 and y < 0))

Now when you run the program, you will see three lines of output for each time through
the loop. The last time through the loop, the condition should be false. If the loop
keeps going, you will be able to see the values of x and y, and you might figure out
why they are not being updated correctly.

Infinite Recursion

Most of the time, an infinite recursion will cause the program to run for a while and
then produce a Maximum recursion depth exceeded error.

If you suspect that a function or method is causing an infinite recursion, start by check-
ing to make sure that there is a base case. In other words, there should be some condi-
tion that will cause the function or method to return without making a recursive invo-
cation. If not, then you need to rethink the algorithm and identify a base case.

If there is a base case but the program doesn’t seem to be reaching it, add a print
statement at the beginning of the function or method that prints the parameters. Now
when you run the program, you will see a few lines of output every time the function or
method is invoked, and you will see the parameters. If the parameters are not moving
toward the base case, you will get some ideas about why not.

Flow of Execution

If you are not sure how the flow of execution is moving through your program, add
print statements to the beginning of each function with a message like “entering func-
tion foo,” where foo is the name of the function.

Now when you run the program, it will print a trace of each function as it is invoked.

A.2.3 When I run the program I get an exception.

If something goes wrong during runtime, Python prints a message that includes the
name of the exception, the line of the program where the problem occurred, and a
traceback.

The traceback identifies the function that is currently running, and then the function
that invoked it, and then the function that invoked that, and so on. In other words, it
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traces the path of function invocations that got you to where you are. It also includes
the line number in your file where each of these calls occurs.

The first step is to examine the place in the program where the error occurred and see
if you can figure out what happened. These are some of the most common runtime
errors:

NameError: You are trying to use a variable that doesn’t exist in the current environ-
ment. Remember that local variables are local. You cannot refer to them from
outside the function where they are defined.

TypeError: There are several possible causes:

• You are trying to use a value improperly. Example: indexing a string, list,
or tuple with something other than an integer.

• There is a mismatch between the items in a format string and the items
passed for conversion. This can happen if either the number of items does
not match or an invalid conversion is called for.

• You are passing the wrong number of arguments to a function or method.
For methods, look at the method definition and check that the first param-
eter is self. Then look at the method invocation; make sure you are in-
voking the method on an object with the right type and providing the other
arguments correctly.

KeyError: You are trying to access an element of a dictionary using a key value that
the dictionary does not contain.

AttributeError: You are trying to access an attribute or method that does not exist.

IndexError: The index you are using to access a list, string, or tuple is greater than its
length minus one. Immediately before the site of the error, add a print statement
to display the value of the index and the length of the array. Is the array the right
size? Is the index the right value?

A.2.4 I added so many print statements I get inundated with out-
put.

One of the problems with using print statements for debugging is that you can end up
buried in output. There are two ways to proceed: simplify the output or simplify the
program.

To simplify the output, you can remove or comment out print statements that aren’t
helping, or combine them, or format the output so it is easier to understand.

To simplify the program, there are several things you can do. First, scale down the
problem the program is working on. For example, if you are sorting an array, sort a
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small array. If the program takes input from the user, give it the simplest input that
causes the problem.

Second, clean up the program. Remove dead code and reorganize the program to make
it as easy to read as possible. For example, if you suspect that the problem is in a deeply
nested part of the program, try rewriting that part with simpler structure. If you suspect
a large function, try splitting it into smaller functions and testing them separately.

Often the process of finding the minimal test case leads you to the bug. If you find that
a program works in one situation but not in another, that gives you a clue about what is
going on.

Similarly, rewriting a piece of code can help you find subtle bugs. If you make a change
that you think doesn’t affect the program, and it does, that can tip you off.

A.3 Semantic errors
In some ways, semantic errors are the hardest to debug, because the compiler and the
runtime system provide no information about what is wrong. Only you know what the
program is supposed to do, and only you know that it isn’t doing it.

The first step is to make a connection between the program text and the behavior you
are seeing. You need a hypothesis about what the program is actually doing. One of
the things that makes that hard is that computers run so fast.

You will often wish that you could slow the program down to human speed, and with
some debuggers you can. But the time it takes to insert a few well-placed print state-
ments is often short compared to setting up the debugger, inserting and removing break-
points, and “walking” the program to where the error is occurring.

A.3.1 My program doesn’t work.

You should ask yourself these questions:

• Is there something the program was supposed to do but which doesn’t seem to
be happening? Find the section of the code that performs that function and make
sure it is executing when you think it should.

• Is something happening that shouldn’t? Find code in your program that performs
that function and see if it is executing when it shouldn’t.

• Is a section of code producing an effect that is not what you expected? Make sure
that you understand the code in question, especially if it involves invocations to
functions or methods in other Python modules. Read the documentation for the
functions you invoke. Try them out by writing simple test cases and checking
the results.
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In order to program, you need to have a mental model of how programs work. If you
write a program that doesn’t do what you expect, very often the problem is not in the
program; it’s in your mental model.

The best way to correct your mental model is to break the program into its components
(usually the functions and methods) and test each component independently. Once you
find the discrepancy between your model and reality, you can solve the problem.

Of course, you should be building and testing components as you develop the program.
If you encounter a problem, there should be only a small amount of new code that is
not known to be correct.

A.3.2 I’ve got a big hairy expression and it doesn’t do what I ex-
pect.

Writing complex expressions is fine as long as they are readable, but they can be hard to
debug. It is often a good idea to break a complex expression into a series of assignments
to temporary variables.

For example:

self.hands[i].addCard(self.hands[self.findNeighbor(i)].popCard())

This can be rewritten as:

neighbor = self.findNeighbor(i)
pickedCard = self.hands[neighbor].popCard()
self.hands[i].addCard(pickedCard)

The explicit version is easier to read because the variable names provide additional
documentation, and it is easier to debug because you can check the types of the inter-
mediate variables and display their values.

Another problem that can occur with big expressions is that the order of evaluation
may not be what you expect. For example, if you are translating the expression x

2π
into

Python, you might write:

y = x / 2 * math.pi

That is not correct because multiplication and division have the same precedence and
are evaluated from left to right. So this expression computes xπ/2.

A good way to debug expressions is to add parentheses to make the order of evaluation
explicit:

y = x / (2 * math.pi)

Whenever you are not sure of the order of evaluation, use parentheses. Not only will
the program be correct (in the sense of doing what you intended), it will also be more
readable for other people who haven’t memorized the rules of precedence.
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A.3.3 I’ve got a function or method that doesn’t return what I ex-
pect.

If you have a return statement with a complex expression, you don’t have a chance to
print the return value before returning. Again, you can use a temporary variable. For
example, instead of:

return self.hands[i].removeMatches()

you could write:

count = self.hands[i].removeMatches()
return count

Now you have the opportunity to display the value of count before returning.

A.3.4 I’m really, really stuck and I need help.

First, try getting away from the computer for a few minutes. Computers emit waves
that affect the brain, causing these effects:

• Frustration and/or rage.

• Superstitious beliefs (“the computer hates me”) and magical thinking (“the pro-
gram only works when I wear my hat backward”).

• Random-walk programming (the attempt to program by writing every possible
program and choosing the one that does the right thing).

If you find yourself suffering from any of these symptoms, get up and go for a walk.
When you are calm, think about the program. What is it doing? What are some possible
causes of that behavior? When was the last time you had a working program, and what
did you do next?

Sometimes it just takes time to find a bug. We often find bugs when we are away from
the computer and let our minds wander. Some of the best places to find bugs are trains,
showers, and in bed, just before you fall asleep.

A.3.5 No, I really need help.

It happens. Even the best programmers occasionally get stuck. Sometimes you work
on a program so long that you can’t see the error. A fresh pair of eyes is just the thing.

Before you bring someone else in, make sure you have exhausted the techniques de-
scribed here. Your program should be as simple as possible, and you should be working
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on the smallest input that causes the error. You should have print statements in the ap-
propriate places (and the output they produce should be comprehensible). You should
understand the problem well enough to describe it concisely.

When you bring someone in to help, be sure to give them the information they need:

• If there is an error message, what is it and what part of the program does it
indicate?

• What was the last thing you did before this error occurred? What were the last
lines of code that you wrote, or what is the new test case that fails?

• What have you tried so far, and what have you learned?

When you find the bug, take a second to think about what you could have done to find
it faster. Next time you see something similar, you will be able to find the bug more
quickly.

Remember, the goal is not just to make the program work. The goal is to learn how to
make the program work.
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