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General Gap Penalties

• Now, the cost of a run of k gaps is GAP × k

• A solution to the problem above is to support general gap 
penalty, so that the score of a run of k gaps is gap(k) < GAP × k.

• Then, the optimization will prefer to group gaps together.

AAAGAATTCA
A-A-A-T-CA

AAAGAATTCA
AAA----TCAvs.

These have the same score, but the second one is often more 
plausible.

A single insertion of “GAAT” into the first string could change 
it into the second.



General Gap Penalties

AAAGAATTCA
A-A-A-T-CA

AAAGAATTCA
AAA----TCAvs.

Previous DP no longer works with general gap penalties because 
the score of the last character depends on details of the previous 
alignment:

AAAGAAC
AAA----

AAAGAATC
AAA-----vs.

Instead, we need to “know” how the previous alignment ends in 
order to give a score to the last subproblem.



Three Matrices
We now keep 3 different matrices: 

M[i,j] = score of best alignment of x[1..i] and y[1..j] ending with a character-
character match or mismatch.

X[i,j] = score of best alignment of x[1..i] and y[1..j] ending with a space in X.

Y[i,j] = score of best alignment of x[1..i] and y[1..j] ending with a space in Y.

M [i, j] = match(i, j) + max






M [i− 1, j − 1]
X[i− 1, j − 1]
Y [i− 1, j − 1]

X[i, j] = max

�
M [i, j − k]− gap(k) for 1 ≤ k ≤ j

Y [i, j − k]− gap(k) for 1 ≤ k ≤ j

Y [i, j] = max

�
M [i− k, j]− gap(k) for 1 ≤ k ≤ i

X[i− k, j]− gap(k) for 1 ≤ k ≤ i



The M Matrix

M [i, j] = match(i, j) + max






M [i− 1, j − 1]
X[i− 1, j − 1]
Y [i− 1, j − 1]

We now keep 3 different matrices: 

M[i,j] = score of best alignment of x[1..i] and y[1..j] ending with a character-
character match or mismatch.

X[i,j] = score of best alignment of x[1..i] and y[1..j] ending with a space in X.

Y[i,j] = score of best alignment of x[1..i] and y[1..j] ending with a space in Y.

By definition, alignment 
ends in a match.

A
G

Any kind of alignment is 
allowed before the match.



G---
ACGT

The X (and Y) matrices

X[i, j] = max

�
M [i, j − k]− gap(k) for 1 ≤ k ≤ j

Y [i, j − k]− gap(k) for 1 ≤ k ≤ j

i
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G---
-CGT

i
-
G

j-k j

k
x

y

k decides how long to 
make the gap. 

We have to make the 
whole gap at once in order 
to know how to score it. 



G---
ACGT

The X (and Y) matrices

X[i, j] = max

�
M [i, j − k]− gap(k) for 1 ≤ k ≤ j

Y [i, j − k]− gap(k) for 1 ≤ k ≤ j
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G---
-CGT

i
-
G

j-k j

k
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----
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This case is automatically 
handled.

k decides how long to 
make the gap. 

We have to make the 
whole gap at once in order 
to know how to score it. 



Running Time for Gap Penalties

Runtime:

• Assume |X| = |Y| = n for simplicity: 3n2 subproblems

• 2n2 subproblems take O(n) time to solve (because we have to try all k)

⇒ O(n3) total time

M [i, j] = match(i, j) + max






M [i− 1, j − 1]
X[i− 1, j − 1]
Y [i− 1, j − 1]

X[i, j] = max

�
M [i, j − k]− gap(k) for 1 ≤ k ≤ j

Y [i, j − k]− gap(k) for 1 ≤ k ≤ j

Y [i, j] = max

�
M [i− k, j]− gap(k) for 1 ≤ k ≤ i

X[i− k, j]− gap(k) for 1 ≤ k ≤ i

Final score is max {M[n,m], X[n,m], Y[n,m]}. 

How do you do the traceback?



Affine Gap Penalties

• O(n3) for general gap penalties is usually too slow... 

• We can still encourage spaces to group together using a special case 
of general penalties called affine gap penalties:

gap_start = the cost of starting a gap

gap_extend = the cost of extending a gap by one more space

• Same idea of using 3 matrices, but now we don’t need to search over 
all gap lengths, we just have to know whether we are starting a new 
gap or not.



Affine Gap Penalties

X[i, j] = max






gap start + gap extend + M [i, j − 1]
gap extend + X[i, j − 1]
gap start + gap extend + Y [i, j − 1]

Y [i, j] = max






gap start + gap extend + M [i− 1, j]
gap start + gap extend + X[i− 1, j]
gap extend + Y [i− 1, j]

M [i, j] = match(i, j) + max






M [i− 1, j − 1]
X[i− 1, j − 1]
Y [i− 1, j − 1]

gap in x

gap in y

match 
between
x and y

If previous 
alignment ends in 
match, this is a 
new gap



Affine Base Cases

• M[0, i] = “score of best alignment between 0 characters of x and i 
characters of y that ends in a match” = -∞ because no such alignment 
can exist.

• X[0, i] = “score of best alignment between 0 characters of x and i 
characters of y that ends in a gap in x” = gap_start + i × gap_extend 
because this alignment looks like: 

• X[i, 0] = “score of best alignment between i characters of x and 0 
characters of y that ends in a gap in X” = -∞

• M[i, 0] = M[0, i] and Y[0, i] and Y[i,0] are computed using the same logic 
as X[i,0] and X[0,i]

---------
yyyyyyyyy

xxxxxxxxx-
---------- ← not allowed



Affine Gap Runtime

• 3n2 subproblems

• Each one takes constant time

• Total runtime O(n2), back to the run time of the basic running 
time.



Why do you “need” 3 matrices?

• Alternative WRONG algorithm:

M[i][j] = max(

   M[i-1][j-1] + cost(x[i], y[i]),

   M[i-1][j] + gap + (gap_start if Arrow[i-1][j] !=    ),

   M[j][i-1] + gap + (gap_start if Arrow[i][j-1] !=    )

)

Intuition: we only need to know whether we are starting a gap or extending a gap.

The arrows coming out of each subproblem tell us how the best alignment ends, so we 
can use them to decide if we are starting a new gap.

The best alignment 
up to this cell ends 
in a match.

The best alignment 
up to this cell ends 

in a gap.
PROBLEM: The best alignment for strings 
x[1..i] and y[1..j] doesn’t have to be used 
in the best alignment between 
x[1..i+1] and y[1..j+1]



Why 3 Matrices: Example

CART
CA-T

match = 10, mismatch = -2, gap = -7, gap_start = -15

OPT(4, 3) = optimal score = 30 - 15 - 7 = 8

CARTS
CA-T-

WRONG(5, 3) = 30 - 15 - 7 - 15 - 7

CARTS
CAT--

OPT(5, 3) = 20 - 2 - 15 - 14 

this is why we need to keep the X and Y matrices around. 
they tell us the score of ending with a gap in one of the sequences.

= -14

= -11



Side Note: Lower Bounds

• Suppose the lengths of x and y are n.

• Clearly, need at least Ω(n) time to find their global alignment 
(have to read the strings!)

• The DP algorithms show global alignment can be done in O(n2) time.

• A trick called the “Four Russians Speedup” can make a similar dynamic 
programming algorithm run in O(n2 / log n) time. 

• We won’t talk about the Four Russian’s Speedup, but it’s in your book in Sections 7.3 
& 7.4.

• Open questions: Can we do better? Can we prove that we can’t do 
better? No one knows...



Recap

• Semiglobal alignment: 0 initial columns or take maximums over 
last row or column.

• Local alignment: extra “0” case.

• General gap penalties require 3 matrices and O(n3) time.

• Affine gap penalties require 3 matrices, but only O(n2) time. 



What you should know by now...

• Global & local sequence alignment algorithms with basic gap 
penalties

• Alignment with general gap penalties

• Alignment with affine gap penalties

• Longest common subsequence

• Dynamic programming framework


