Gap Penalties

CMSC 423



General Gap Penalties

AAAGAATTCA Vs AAAGAATTCA
A-A-A-T-CA ' AAA----TCA

These have the same score, but the second one is often more
plausible.

A single insertion of “GAAT” into the first string could change
it into the second.
* Now, the cost of a run of k gaps is GAP x k

* A solution to the problem above is to support general gap
penalty, so that the score of a run of k gaps is gap(k) < GAP x k.

 Then, the optimization will prefer to group gaps together.



General Gap Penalties

AAAGAATTCA AAAGAATTCA

A-A-A-T-CA Vs AAA----TCA

Previous DP no longer works with general gap penalties because

the score of the last character depends on details of the previous
alignment:

AAAGAAC AAAGAATC

AAA-——|- vs. AAA-———|-

Instead, we need to “know” how the previous alignment ends in
order to give a score to the last subproblem.



Three Matrices

We now keep 3 different matrices:

M[i,j] = score of best alignment of x[I..i] and y[1..j] ending with a character-
character match or mismatch.

X[i,j] = score of best alignment of x[I..i] and y[I..j] ending with a space in X.

Y[i,j] = score of best alignment of x[I..i] and y[I..j] ending with a space in Y.

M[Z o 17] - 1]
M]i, j] = match(i, j) + max { X[i — 1,5 — 1]
Y[Z o 17] o 1]

(M[i,j — k] — gap(k) for 1<k < j

o
03] = s T gap(h) for 1< k<)

M[i — k,§] — gap(k) for 1<k <i

Yii. 1 — max
i, J] = max X[i — k, j] — gap(k) for 1 <k <i

\



The M Matrix

We now keep 3 different matrices:

M[i,j] = score of best alignment of x[I..i] and y[1..j] ending with a character-
character match or mismatch.

X[i,j] = score of best alignment of x[I..i] and y[I..j] ending with a space in X.

Y[i,j] = score of best alignment of x[I..i] and y[I..j] ending with a space in Y.

By definition, alignhment
ends in a match.

\l M[Z_laj_l]
Mz, 7| = match(z, j) + max Xt—1,7 —1]
Yi—1,5—1

A D

Any kind of alignment is
allowed before the match.




The X (and Y) matrices

i < k decides how long to

X Gee— - make the gap.
Y ACGTG We have to make the
j-k j .
whole gap at once in order
l to know how to score it.
Mli, 9 — k| — k) forl1 <k<jy
] = e M6~ H g0 for 1 <k
Yl0i,j — k] —gap(k) forl<k<




The X (and Y) matrices

i < k decides how long to

X Gee— - make the gap.
Y ACGTG We have to make the
j-k j .
whole gap at once in order
l to know how to score it.

o Mli,7 — k| —gap(k) for1 <k <
X7, j] = max o |
Yii,7 — k| —gap(k) forl1l<k<

T This case is automatically
ik handled.
. | k
X G——— - —
X I . .
-CGTG
! ik , y .(I;(CGT G
J- J




Running Time for Gap Penalties

M[Z_ 17] o 1]
M|, j| = match(i, j) + max < X[i — 1,7 — 1]
Y[Z_ 17.] - 1]

Mli,j — k] —gap(k) for1<k<j

Xi. | —
0] maX{Y[i,j — k] —gap(k) for 1<k <

Mli —k,j] —gap(k) for1 <k <1
X[t —k,j] —gap(k) forl <k <

Yi, j] = max {

Final score is max {M[n,m], X[n,m],Y[n,m]}.

How do you do the traceback!?

Runtime:
e Assume |X]| = |Y| = n for simplicity: 3n? subproblems
e 2n? subproblems take O(n) time to solve (because we have to try all k)

= O(n’) total time



Affine Gap Penalties

O(n?) for general gap penalties is usually too slow...

We can still encourage spaces to group together using a special case
of general penalties called daffine gap penalties:

gap_start = the cost of starting a gap

gap_extend = the cost of extending a gap by one more space

Same idea of using 3 matrices, but now we don’t need to search over
all gap lengths, we just have to know whether we are starting a new
gap or not.



Affine Gap Penalties

M[i—1,j —1]
M7, j] = match(z,5) + max § X[i — 1,7 — 1]
Vi-1,j-1
3

gap_start + gap_extend + M i, j — 1]
Xli, j] = max < gap_extend + X[i, j — 1]
gap_start + gap_extend + Y'|i, j — 1]

gap_start + gap_extend + M i — 1, j]

Y|i, 7] = max { gap_start + gap_extend + X[i — 1, j]
gap_extend + Y|t — 1, j]



Affine Base Cases

M[O, i] = “score of best alignment between 0 characters of x and i
characters of y that ends in a match” = -0 because no such alignment
can exist.

X[0, i] ="score of best alignment between 0 characters of x and i
characters of y that ends in a gap in X’ = gap start +i X gap extend
because this alignment looks like:

YYYYYYYYY

X[i, 0] ="score of best alignment between i characters of x and 0
characters of y that ends in a gap in X" = -00

XXXXXXXXX —
< not allowed

MIi, 0] = MJO0,i] and Y[O, i] and Y[i,0] are computed using the same logic
as X[i,0] and X[O0,i]



Affine Gap Runtime

3n? subproblems
Each one takes constant time

Total runtime O(n?), back to the run time of the basic running
time.



Why do you “need” 3 matrices?

e Alternative WRONG algorithm:

M[1][3J] = max(
M[1i-1][]J-1] + cost(x[1], Yy[1]),
M[i-1][]J] + gap + (gap start if Arrow[i-1][]] != € ),

M[J][i-1] + gap + (gap start if Arrow[i][]-1] != ¢f)
)

Intuition: we only need to know whether we are starting a gap or extending a gap.

The arrows coming out of each subproblem tell us how the best alignment ends, so we
can use them to decide if we are starting a new gap.

The best alignment
up to this cell ends

e PROBLEM:The best alignment for strings
——e x[I..i] and y[I..j] doesn’t have to be used
The best alignment in the best alignhment between

up to this cell ends ) )
in & match. x[I..i+1] and y[|..j*+1]



Why 3 Matrices: Example

match = 10, mismatch = -2, gap = -/, gap start = -15

CART
CA-T

CARTS
CA-T-

CARTS
CAT--

OPT(4, 3) = optimal score =30 -|5-/=8
WRONG(5,3) = 30 - 15-7-15-7=-14
OPT(5,3)=20-2-15- 14 =-]|

this is why we need to keep the X and Y matrices around.
they tell us the score of ending with a gap in one of the sequences.



Side Note: Lower Bounds

Suppose the lengths of x and y are n.

Clearly, need at least )(n) time to find their global alignment
(have to read the strings!)

The DP algorithms show global alignment can be done in O(n?) time.

A trick called the “Four Russians Speedup” can make a similar dynamic
programming algorithm run in O(n? / log n) time.

*  We won't talk about the Four Russian’s Speedup, but it’s in your book in Sections 7.3
& 7.4.

Open questions: Can we do better? Can we prove that we can’t do
better! No one knows...



Recap

Semiglobal alignment: O initial columns or take maximums over
last row or column.

Local alighment: extra “0” case.

General gap penalties require 3 matrices and O(n%) time.

Affine gap penalties require 3 matrices, but only O(n?) time.



What you should know by now...

Global & local sequence alighment algorithms with basic gap
penalties

Alignment with general gap penalties
Alignment with affine gap penalties
Longest common subsequence

Dynamic programming framework



