
Hidden Markov Models

BMI/CS 576

www.biostat.wisc.edu/bmi576.html

Colin Dewey

cdewey@biostat.wisc.edu

Fall 2008

A Simple HMM

A

T C

G A

T C

G

•  given say a T in our input sequence, which state emitted it?

Hidden State

•  we’ll distinguish between the observed parts of a problem

and the hidden parts

•  in the Markov models we’ve considered previously, it is

clear which state accounts for each part of the observed

sequence

•  in the model above, there are multiple states that could

account for each part of the observed sequence

–  this is the hidden part of the problem

Simple HMM for Gene Finding
Figure from A. Krogh, An Introduction to Hidden Markov Models for Biological Sequences

GCTAC

AAAAA

TTTTT

CTACG

CTACA

CTACC

CTACT

start

A

T

C

G

A

T

C

G

A

T

C

G
start

The Parameters of an HMM

•  since we’ve decoupled states and characters, we might also

have emission probabilities

€

e
k
(b) = Pr(X

i
= b |π

i
= k)

)|Pr(1 kla
iikl
=== −ππ

probability of emitting character b in state k

probability of a transition from state k to l

 represents a path (sequence of states) through

the model

•  as in Markov chain models, we have transition

probabilities

π

A Simple HMM with Emission

Parameters

0.8

)A(2e

13
a

probability of emitting character A in state 2

probability of a transition from state 1 to state 3

0.4

A 0.4

C 0.1

G 0.2

T 0.3

A 0.1

C 0.4

G 0.4

T 0.1

A 0.2

C 0.3

G 0.3

T 0.2

begin end

0.5

0.5

0.2

0.8

0.6

0.1

0.9
0.2

0 5

4

3

2

1

A 0.4

C 0.1

G 0.1

T 0.4

Three Important Questions

•  How likely is a given sequence?

the Forward algorithm

•  What is the most probable “path” for generating a given
sequence?

the Viterbi algorithm

•  How can we learn the HMM parameters given a set of
sequences?

the Forward-Backward (Baum-Welch) algorithm

How Likely is a Given Sequence?

•  the probability that the path is taken and the

sequence is generated:

(assuming begin/end are the only silent states on path)

€

Pr(X
1
...X

L
,π

1
...π

L
) = a

0π1
aπ

L
N

aπ
i
π
i+1

i=1

L−1

∏ eπ
i

(X
i
)

i=1

L

∏
€

X
1
...X

L

€

π
1
...π

L

How Likely Is A Given Path and

Sequence?

A 0.1

C 0.4

G 0.4

T 0.1

A 0.4

C 0.1

G 0.1

T 0.4

begin end

0.5

0.5

0.2

0.8

0.4

0.6

0.1

0.9
0.2

0.8

0 5

4

3

2

1

6.03.08.04.02.04.05.0

)C()A()A(),AACPr(35313111101

××××××=

××××××= aeaeaeaπ

A 0.4

C 0.1

G 0.2

T 0.3

A 0.2

C 0.3

G 0.3

T 0.2

How Likely is a Given Sequence?

•  the probability over all paths is:

€

Pr(X
1
...X

L
) = Pr(X

1
...X

L
,π

1
...π

L
)

π

∑

•  but the number of paths can be exponential in the length of

the sequence...

•  the Forward algorithm enables us to compute this

efficiently

π

How Likely is a Given Sequence:

The Forward Algorithm

•  A dynamic programming solution

•  subproblem: define to be the probability of being

in state k having observed the first i characters of x

•  we want to compute , the probability of being in

the end state having observed all of x

•  can define this recursively

)(ifk

)(LfN

The Forward Algorithm
•  because of the Markov property, don’t have to explicitly

enumerate every path

)(4 if)1(),1(42 −− ifif•  e.g. compute using

A 0.4

C 0.1

G 0.2

T 0.3

A 0.1

C 0.4

G 0.4

T 0.1

A 0.4

C 0.1

G 0.1

T 0.4

A 0.2

C 0.3

G 0.3

T 0.2

begin end

0.5

0.5

0.2

0.8

0.4

0.6

0.1

0.9
0.2

0.8

0 5

4

3

2

1

The Forward Algorithm

•  initialization:

1)0(0 =f

statessilent not are that for ,0)0(kfk =

probability that we’re in start state and

have observed 0 characters from the sequence

The Forward Algorithm

€

fl (i) = fk (i)akl
k

∑

•  recursion for silent states:

∑ −=
k

klkll aifieif)1()()(

•  recursion for emitting states (i =1…L):

The Forward Algorithm

•  termination:

€

Pr(X) = Pr(X
1
...XL) = fN (L) = fk (L)akN

k

∑

probability that we’re in the end state and

have observed the entire sequence

Forward Algorithm Example

A 0.4

C 0.1

G 0.2

T 0.3

A 0.1

C 0.4

G 0.4

T 0.1

A 0.4

C 0.1

G 0.1

T 0.4

A 0.2

C 0.3

G 0.3

T 0.2

begin end

0.5

0.5

0.2

0.8

0.4

0.6

0.1

0.9
0.2

0.8

0 5

4

3

2

1

•  given the sequence x = TAGA

()2.015.05.004.0

))1()1(()()2(11101011

×+××

=+××= afafAef

Forward Algorithm Example

1)0(0 =f 0)0(0)0(51 == ff …

•  given the sequence x = TAGA

•  initialization

•  computing other values

() 15.02.005.013.0

))0()0(()()1(11101011

=×+××

=+××= afafTef

...

()8.005.014.0)1(2 ×+××=f

))4()4(()4()Pr(4543535 afaffTAGA +×==

Forward Algorithm Note

•  in some cases, we can make the algorithm more efficient

by taking into account the minimum number of steps that

must be taken to reach a state

begin end

0 5

4

3

2

1

•  e.g. for this HMM, we don’t

need to initialize or compute

the values

)1(,)0(

 ,)0(,)0(

55

43

ff

ff

Three Important Questions

•  How likely is a given sequence?

•  What is the most probable “path” for generating a given

sequence?

•  How can we learn the HMM parameters given a set of

sequences?

Finding the Most Probable Path:

The Viterbi Algorithm

•  Dynamic programming approach, again!

•  subproblem: define to be the probability of the most

probable path accounting for the first i characters of x and

ending in state k

)(iv
k

•  we want to compute , the probability of the most

probable path accounting for all of the sequence and

ending in the end state

•  can define recursively

•  can use DP to find efficiently

)(Lv
N

)(Lv
N

Finding the Most Probable Path:

The Viterbi Algorithm

•  initialization:

1)0(0 =v

statessilent not are that for ,0)0(kv
k

=

The Viterbi Algorithm

•  recursion for emitting states (i =1…L):

[]
klk

k
ill

aivxeiv)1(max)()(−=

[]
klk

k
l

aiviv)(max)(=

•  recursion for silent states:

[]
klk

k

l
aivi)(maxarg)(ptr =

[]
klk

k

l
aivi)1(maxarg)(ptr −= keep track of most

probable path

The Viterbi Algorithm

•  traceback: follow pointers back starting at

•  termination:

€

π
L

*

€

π
L

* = argmax
k

v
k
(L)a

kN()

€

Pr(x,π *
) = max

k

v
k
(L)a

kN()

Forward & Viterbi Algorithms

begin end

•  Forward/Viterbi algorithms effectively consider all

possible paths for a sequence

–  Forward to find probability of a sequence

–  Viterbi to find most probable path

•  consider a sequence of length 4…

Three Important Questions

•  How likely is a given sequence?

•  What is the most probable “path” for generating a given

sequence?

•  How can we learn the HMM parameters given a set of

sequences?

Learning without Hidden State
•  learning is simple if we know the correct path for each

sequence in our training set

•  estimate parameters by counting the number of times each

parameter is used across the training set

5

C A G T

0 2 2 4 4

begin end

0

4

3

2

1

5

Learning with Hidden State

5

C A G T

0

begin end

0

4

3

2

1

5

? ? ? ?

•  if we don’t know the correct path for each sequence in our

training set, consider all possible paths for the sequence

•  estimate parameters through a procedure that counts the

expected number of times each transition and emission

occurs across the training set

Learning Parameters

•  if we know the state path for each training sequence,
learning the model parameters is simple

–  no hidden state during training

–  count how often each transition and emission occurs

–  normalize/smooth to get probabilities

–  process is just like it was for Markov chain models

•  if we don’t know the path for each training sequence, how
can we determine the counts?

–  key insight: estimate the counts by considering every
path weighted by its probability

Learning Parameters:

The Baum-Welch Algorithm

•  a.k.a the Forward-Backward algorithm

•  an Expectation Maximization (EM) algorithm

–  EM is a family of algorithms for learning probabilistic

models in problems that involve hidden state

•  in this context, the hidden state is the path that explains

each training sequence

Learning Parameters:

The Baum-Welch Algorithm

•  algorithm sketch:

–  initialize parameters of model

–  iterate until convergence

•  calculate the expected number of times each

transition or emission is used

•  adjust the parameters to maximize the likelihood of

these expected values

The Expectation Step

•  first, we need to know the probability of the i th symbol

being produced by state k, given sequence x

)|Pr(xk
i
=π

•  given this we can compute our expected counts for state

transitions, character emissions

The Expectation Step
•  the probability of of producing x with the i th symbol being

produced by state k is

)|...Pr(

),...Pr(),Pr(

1

1

kxx

kxxxk

iLi

iii

=

×===

+ π

ππ

•  the first term is , computed by the forward algorithm)(ifk

•  the second term is , computed by the backward

algorithm

)(ib
k

The Expectation Step
•  we want to know the probability of producing sequence x

with the i th symbol being produced by state k (for all x, i

and k)

C A G T

A 0.4

C 0.1

G 0.2

T 0.3

A 0.4

C 0.1

G 0.1

T 0.4

A 0.2

C 0.3

G 0.3

T 0.2

begin end

0.5

0.5

0.2

0.8

0.4

0.6

0.1

0.9
0.2

0.8

0 5

4

3

2

1

A 0.1

C 0.4

G 0.4

T 0.1

The Expectation Step
•  the forward algorithm gives us , the probability of

being in state k having observed the first i characters of x

)(ifk

A 0.4

C 0.1

G 0.2

T 0.3

A 0.2

C 0.3

G 0.3

T 0.2

begin end

0.5

0.5

0.2

0.8

0.4

0.6

0.1

0.9
0.2

0.8

0 5

4

3

2

1

C A G T

A 0.4

C 0.1

G 0.1

T 0.4

A 0.1

C 0.4

G 0.4

T 0.1

The Expectation Step
•  the backward algorithm gives us , the probability of

observing the rest of x, given that we’re in state k after i

characters

)(ib
k

A 0.4

C 0.1

G 0.2

T 0.3

A 0.2

C 0.3

G 0.3

T 0.2

begin end

0.5

0.5

0.2

0.8

0.4

0.6

0.1

0.9
0.2

0.8

0 5

4

3

2

1

A 0.1

C 0.4

G 0.4

T 0.1

C A G T

A 0.4

C 0.1

G 0.1

T 0.4

The Expectation Step
•  putting forward and backward together, we can compute

the probability of producing sequence x with the i th

symbol being produced by state k

A 0.4

C 0.1

G 0.2

T 0.3

A 0.2

C 0.3

G 0.3

T 0.2

begin end

0.5

0.5

0.2

0.8

0.4

0.6

0.1

0.9
0.2

0.8

0 5

4

3

2

1

C A G T

A 0.4

C 0.1

G 0.1

T 0.4

A 0.1

C 0.4

G 0.4

T 0.1

The Backward Algorithm

•  initialization:

kNk
aLb =)(

   for states with a transition to end state

The Backward Algorithm

•  recursion (i =L…1):

otherwise),1()(

statesilent is if ,)(
)(

1

∑








+
=

+l lilkl

lkl

k

ibxea

liba
ib

The Backward Algorithm

•  termination:

otherwise),1()(

statesilent is if ,)0(
)...Pr()Pr(

10

0

1 ∑








==
l lll

ll

L

bxea

lba
xxx

The Expectation Step

)(

)()(

)Pr(

)()(

)Pr(

),Pr(
)|Pr(

Lf

ibif

x

ibif

x

xk
xk

N

kk

kk

i
i

=

=

=
==

π
π

•  now we can calculate the probability of the i th symbol

being produced by state k, given x

The Expectation Step

,

{ | }

1
() ()

() k k
j j

i

j j

k c j

x i x cN

n f i b i
f L =

 
=  

  
∑ ∑

•  now we can calculate the expected number of times letter c

is emitted by state k

•  here we’ve added the superscript j to refer to a specific

sequence in the training set

sum over

sequences

sum over positions

where c occurs in x

The Expectation Step

1() () (1)

()j

j j j

k kl l i l

i
k l j

x N

f i a e x b i

n
f L

+

→

+

=

∑
∑

•  and we can calculate the expected number of times that the

transition from k to l is used

•  or if l is a silent state

() ()

()j

j j

k kl l

i
k l j

x N

f i a b i

n
f L

→ =

∑
∑

The Maximization Step

∑
=

'

',

,
)(

c

ck

ck

k

n

n
ce

ck
n
,•  Let be the expected number of emissions of c from

state k for the training set

•  estimate new emission parameters by:

•  just like in the simple case

•  but typically we’ll do some “smoothing” (e.g. add

pseudocounts)

The Maximization Step

∑ →

→=

m

mk

lk

kl

n

n
a

lk
n →•  let be the expected number of transitions from state

k to state l for the training set

•  estimate new transition parameters by:

The Baum-Welch Algorithm

•  initialize the parameters of the HMM

•  iterate until convergence

–  initialize , with pseudocounts

–  E-step: for each training set sequence j = 1…n

•  calculate values for sequence j

•  calculate values for sequence j

•  add the contribution of sequence j to ,

–  M-step: update the HMM parameters using ,

ck
n
, lk
n →

)(ifk
)(ib

k

ck
n
, lk
n →

ck
n
, lk

n →

Baum-Welch Algorithm Example

•  given

–  the HMM with the parameters initialized as shown

–  the training sequences TAG, ACG

A 0.1

C 0.4

G 0.4

T 0.1

A 0.4

C 0.1

G 0.1

T 0.4

begin end

1.0

0.1

0.9
0.2

0.8

0 3

2 1

•  we’ll work through one iteration of Baum-Welch

Baum-Welch Example (Cont)
•  determining the forward values for TAG

•  here we compute just the values that represent events with
non-zero probability

•  in a similar way, we also compute forward values for ACG

()

009504.001056.09.0)3()3(

01056.0)0256.00008.0(4.0

)2()2()()3(

008.04.02.01.0)1()()2(

128.04.08.04.0)1()()2(

4.014.0)0()()1(

1)0(

2233

22211222

11222

11111

00111

0

=×=×=

=+×

=×+××=

=××=××=

=××=××=

=×=××=

=

faf

fafaGef

faAef

faAef

faTef

f

Baum-Welch Example (Cont)
•  determining the backward values for TAG

•  here we compute just the values that represent events with
non-zero probability

•  in a similar way, we also compute backward values for
ACG

009504.002376.04.00.1)1()()0(

02376.0036.01.02.0072.04.08.0

)2()()2()()1(

072.09.04.02.0)3()()2(

036.09.04.01.0)3()()2(

9.019.0)3()3(

1)3(

11010

221211111

22121

22222

3232

3

=××=××=

=××+××

=××+××=

=××=××=

=××=××=

=×=×=

=

bTeab

bAeabAeab

bGeab

bGeab

bab

b

Baum-Welch Example (Cont)

•  determining the expected emission counts for state 1

1
)3(

)1()1(

)3(

)2()2(

3

11

3

11
,1 ++=

f

bf

f

bf
n A

1
)3(

)2()2(

3

11
,1 +=

f

bf
n C

1
)3(

)1()1(

3

11
,1 +=

f

bf
n T

1
,1
=

G
n

contribution

of TAG

contribution

of ACG pseudocount

*note that the forward/backward values in these two columns differ; in each column

they are computed for the sequence associated with the column

Baum-Welch Example (Cont)
•  determining the expected transition counts for state 1

(not using pseudocounts)

•  in a similar way, we also determine the expected emission/
transition counts for state 2

)3(

)2()()1(

)3(

)2()()1(

3

11111

3

11111
11

f

bCeaf

f

bAeaf
n +=→

contribution

of TAG

contribution

of ACG

)3(

)3()()2()2()()1(

)3(

)3()()2()2()()1(

3

2212122121

3

2212122121
21

f

bGeafbCeaf

f

bGeafbAeaf
n

+
+

+
=→

Baum-Welch Example (Cont)

•  determining probabilities for state 1



)(

)(

,1,1,1,1

,1

1

,1,1,1,1

,1

1

TGCA

C

TGCA

A

nnnn

n
Ce

nnnn

n
Ae

+++
=

+++
=

2111

21

12

2111

11

11

→→

→

→→

→

+
=

+
=

nn

n
a

nn

n
a

Computational Complexity of

HMM Algorithms

•  given an HMM with N states and a sequence of length L,

the time complexity of the Forward, Backward and

Viterbi algorithms is

–  this assumes that the states are densely interconnected

•  Given M sequences of length L, the time complexity of

Baum-Welch on each iteration is
€

O(N
2
L)

€

O(MN
2
L)

Baum-Welch Convergence

•  some convergence criteria

–  likelihood of the training sequences changes little

–  fixed number of iterations reached

•  usually converges in a small number of iterations

•  will converge to a local maximum (in the likelihood

of the data given the model)

∑=
j
x

j
x)|Pr(log)|sequencesPr(log θθ

parameters

Learning and Prediction Tasks
•  learning

Given: a model, a set of training sequences

Do: find model parameters that explain the training sequences with
relatively high probability (goal is to find a model that generalizes well
to sequences we haven’t seen before)

•  classification

Given: a set of models representing different sequence classes,
a test sequence

Do: determine which model/class best explains the sequence

•  segmentation

Given: a model representing different sequence classes,
a test sequence

Do: segment the sequence into subsequences, predicting the class of each
subsequence

Algorithms for Learning and

Prediction Tasks
•  learning

correct path known for each training sequence ⇒ simple maximum-
likelihood or Bayesian estimation

correct path not known ⇒ Forward-Backward algorithm + (ML or
Bayesian estimation)

•  classification

simple Markov model ⇒ calculate probability of sequence along single
path for each model

hidden Markov model ⇒ Forward algorithm to calculate probability of
sequence along all paths for each model

•  segmentation

hidden Markov model ⇒ Viterbi algorithm to find most probable path
for sequence

Assessing the Accuracy of a

Trained Model
•  two issues

–  What data should we use?

–  Which metrics should we use?

•  Can we measure accuracy on the data set that was used to

train the model?

NO! This will result in accuracy estimates that

 are biased (too high).

Assessing the Accuracy of a

Trained Model
•  need to have a test set that is disjoint from the training set

•  more generally, can use cross validation

3-fold CV

illustrated

Figure from http://gepas.bioinfo.cipf.es/

Accuracy

€

accuracy =
TP + TN

TP + FP + FN + TN

true positives

(TP)

true negatives

(TN)

false positives

(FP)

false negatives

(FN)

positive

negative

positive negative

predicted

class

actual class

Accuracy Metrics

FNTP

TP

pos actual

TP
 (recall)y sensitivit

+
==

true positives

(TP)

true negatives

(TN)

false positives

(FP)

false negatives

(FN)

positive

negative

positive negative

predicted

class

actual class

FPTN

TN

neg actual

TN
 y specificit

+
==

FPTP

TP

pos predicted

TP
 precision

+
== sometimes specificity is

defined this way

