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A Simple HMM 
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•  given say a T in our input sequence, which state emitted it? 



Hidden State 

•  we’ll distinguish between the observed parts of a problem 

and the hidden parts 

•  in the Markov models we’ve considered previously, it is 

clear which state accounts for each part of the observed 

sequence 

•  in the model above, there are multiple states that could 

account for each part of the observed sequence 

–  this is the hidden part of the problem 



Simple HMM for Gene Finding 
Figure from A. Krogh, An Introduction to Hidden Markov Models for Biological Sequences 
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The Parameters of an HMM 

•  since we’ve decoupled states and characters, we might also 

have emission probabilities 
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probability of emitting character b in state k 

probability of a transition from state k to l 

       represents a path (sequence of states) through 

the model 

•  as in Markov chain models, we have transition 

probabilities 
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A Simple HMM with Emission 

Parameters 
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Three Important Questions 

•  How likely is a given sequence? 

the Forward algorithm 

•  What is the most probable “path” for generating a given 
sequence? 

the Viterbi algorithm 

•  How can we learn the HMM parameters given a set of 
sequences? 

the Forward-Backward (Baum-Welch) algorithm 



How Likely is a Given Sequence? 

•  the probability that the path                   is taken and the 

sequence                is generated: 

(assuming begin/end are the only silent states on path) 
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How Likely Is A Given Path and 

Sequence? 
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How Likely is a Given Sequence? 

•  the probability over all paths is: 
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•  but the number of paths can be exponential in the length of 

the sequence... 

•  the Forward algorithm enables us to compute this 

efficiently 
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How Likely is a Given Sequence: 

The Forward Algorithm 

•  A dynamic programming solution 

•  subproblem: define              to be the probability of being 

in state k  having observed the first i characters of x 

•  we want to compute              , the probability of being in 

the end state having observed all of x 

•  can define this recursively 
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The Forward Algorithm 
•  because of the Markov property, don’t have to explicitly 

enumerate every path 

)(4 if )1(  ),1( 42 −− ifif•  e.g. compute              using  
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The Forward Algorithm 

•  initialization: 

1)0(0 =f

statessilent not  are that for     ,0)0( kfk =

probability that we’re in start state and 

have observed 0 characters from the sequence  



The Forward Algorithm 
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•  recursion for silent states: 
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•  recursion for emitting states (i =1…L): 



The Forward Algorithm 

•  termination: 
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probability that we’re in the end state and 

have observed the entire sequence  



Forward Algorithm Example 
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•  given the sequence x = TAGA 



( )2.015.05.004.0            

))1()1(()()2( 11101011

×+××

=+××= afafAef

Forward Algorithm Example 
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•  given the sequence x = TAGA 

•  initialization 

•  computing other values 
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Forward Algorithm Note 

•  in some cases, we can make the algorithm more efficient 

by taking into account the minimum number of steps that 

must be taken to reach a state  

begin end 
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•  e.g. for this HMM, we don’t 

need to initialize or compute 

the values 
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Three Important Questions 

•  How  likely is a given sequence? 

•  What is the most probable “path” for generating a given 

sequence? 

•  How can we learn the HMM parameters given a set of 

sequences? 



Finding the Most Probable Path:  

The Viterbi Algorithm 

•  Dynamic programming approach, again! 

•  subproblem: define            to be the probability of the most 

probable path accounting for the first i characters of x and 

ending in state k 
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•  we want to compute               , the probability of the most 

probable path accounting for all of the sequence and 

ending in the end state 

•  can define recursively 

•  can use DP to find                efficiently 
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Finding the Most Probable Path:  

The Viterbi Algorithm 

•  initialization: 
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The Viterbi Algorithm 

•  recursion for emitting states (i =1…L): 
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The Viterbi Algorithm 

•  traceback: follow pointers back starting at 

•  termination: 
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Forward & Viterbi Algorithms 

begin end 

•  Forward/Viterbi algorithms effectively consider all 

possible paths for a sequence 

–   Forward to find probability of a sequence 

–  Viterbi to find most probable path 

•  consider a sequence of length 4… 



Three Important Questions 

•  How  likely is a given sequence? 

•  What is the most probable “path” for generating a given 

sequence? 

•  How can we learn the HMM parameters given a set of 

sequences? 



Learning without Hidden State 
•  learning is simple if we know the correct path for each 

sequence in our training set 

•  estimate parameters by counting the number of times each 

parameter is used across the training set 
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Learning with Hidden State 
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•  if we don’t know the correct path for each sequence in our 

training set, consider all possible paths for the sequence 

•  estimate parameters through a procedure that counts the 

expected number of times each transition and emission 

occurs across the training set 



Learning Parameters 

•  if we know the state path for each training sequence, 
learning the model parameters is simple 

–  no hidden state during training 

–  count how often each transition and emission occurs 

–  normalize/smooth to get probabilities 

–  process is just like it was for Markov chain models 

•  if we don’t know the path for each training sequence, how 
can we determine the counts? 

–  key insight: estimate the counts by considering every 
path weighted by its probability 



Learning Parameters:  

The Baum-Welch Algorithm 

•  a.k.a the Forward-Backward algorithm 

•  an Expectation Maximization (EM) algorithm 

–  EM is a family of algorithms for learning probabilistic 

models in problems that involve hidden state 

•  in this context, the hidden state is the path that explains 

each training sequence 



Learning Parameters:  

The Baum-Welch Algorithm 

•  algorithm sketch: 

–  initialize parameters of model 

–  iterate until convergence 

•  calculate the expected number of times each 

transition or emission is used 

•  adjust the parameters to maximize the likelihood of 

these expected values 



The Expectation Step 

•  first, we need to know the probability of the i th symbol 

being produced by state k, given sequence x 
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•  given this we can compute our expected counts for state 

transitions, character emissions 



The Expectation Step 
•  the probability of of producing x with the i th symbol being 

produced by state k is 
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•  the first term is               , computed by the forward algorithm )(ifk

•  the second term is              , computed by the backward 

algorithm 

)(ib
k



The Expectation Step 
•  we want to know the probability of producing sequence x 

with the i th symbol being produced by state k (for all x, i 

and k) 
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The Expectation Step 
•  the forward algorithm gives us             , the probability of 

being in state k having observed the first i characters of x 
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The Expectation Step 
•  the backward algorithm gives us            , the probability of 

observing the rest of x, given that we’re in state k after i 

characters 
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The Expectation Step 
•  putting forward and backward together, we can compute 

the probability of producing sequence x with the i th 

symbol being produced by state k 
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The Backward Algorithm 

•  initialization: 
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The Backward Algorithm 

•  recursion (i =L…1): 
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The Backward Algorithm 

•  termination: 
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The Expectation Step 
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•  now we can calculate the probability of the i th symbol 

being produced by state k, given x 



The Expectation Step 
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•  now we can calculate the expected number of times letter c 

is emitted by state k 

•  here we’ve added the superscript j to refer to a specific 

sequence in the training set 
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The Expectation Step 
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•  and we can calculate the expected number of times that the 

transition from k to l is used 

•  or if l is a silent state 
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The Maximization Step 
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,•  Let           be the expected number of emissions of c from 

state k for the training set 

•  estimate new emission parameters by: 

•  just like in the simple case 

•  but typically we’ll do some “smoothing”  (e.g. add 

pseudocounts) 



The Maximization Step 
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k to state l  for the training set 

•  estimate new transition parameters by: 



The Baum-Welch Algorithm 

•  initialize the parameters of the HMM 

•  iterate until convergence 

–  initialize          ,           with pseudocounts 

–  E-step: for each training set sequence j = 1…n 

•  calculate            values for sequence j 

•  calculate            values for sequence j 

•  add the contribution of sequence j to         ,  

–  M-step: update the HMM parameters using        , 
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Baum-Welch Algorithm Example 

•  given  

–  the HMM with the parameters initialized as shown 

–  the training sequences TAG, ACG 
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•  we’ll work through one iteration of Baum-Welch 



Baum-Welch Example (Cont) 
•  determining the forward values for TAG 

•  here we compute just the values that represent events with 
non-zero probability 

•  in a similar way, we also compute forward values for ACG 
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Baum-Welch Example (Cont) 
•  determining the backward values for TAG 

•  here we compute just the values that represent events with 
non-zero probability 

•  in a similar way, we also compute backward values for 
ACG 
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Baum-Welch Example (Cont) 

•  determining the expected emission counts for state 1 

1          
)3(

)1()1(
          

)3(

)2()2(
    

3

11

3

11
,1 ++=

f

bf

f

bf
n A

1          
)3(

)2()2(
                               

3

11
,1 +=

f

bf
n C

1                                       
)3(

)1()1(
    

3

11
,1 +=

f

bf
n T

1                                                           
,1
=

G
n

contribution 

of TAG 

contribution 

of ACG pseudocount 

*note that the forward/backward values in these two columns differ; in each column  

they are computed for the sequence associated with the column 



Baum-Welch Example (Cont) 
•  determining the expected transition counts for state 1    

(not using pseudocounts) 

•  in a similar way, we also determine the expected emission/
transition counts for state 2 
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Baum-Welch Example (Cont) 

•  determining probabilities for state 1 
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Computational Complexity of  

HMM Algorithms 

•  given an HMM with N states and a sequence of length L, 

the time complexity of the Forward, Backward and 

Viterbi algorithms is 

–  this assumes that the states are densely interconnected 

•  Given M sequences of length L, the time complexity of 

Baum-Welch on each iteration is 
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Baum-Welch Convergence 

•  some convergence criteria 

–  likelihood of the training sequences changes little 

–  fixed number of iterations reached 

•  usually converges in a small number of iterations 

•  will converge to a local maximum (in the likelihood 

of the data given the model) 
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Learning and Prediction Tasks 
•  learning 

Given: a model, a set of training sequences 

Do: find model parameters that explain the training sequences with 
relatively high probability (goal is to find a model that generalizes well 
to sequences we haven’t seen before) 

•  classification 

Given: a set of models representing different sequence classes,                                  
a test sequence 

Do: determine which model/class best explains the sequence 

•  segmentation 

Given: a model representing different sequence classes,                               
a test sequence 

Do: segment the sequence into subsequences, predicting the class of each 
subsequence 



Algorithms for Learning and 

Prediction Tasks 
•  learning 

correct path known for each training sequence ⇒ simple maximum-
likelihood or Bayesian estimation 

correct path not known ⇒ Forward-Backward algorithm + (ML or 
Bayesian estimation) 

•  classification 

simple Markov model ⇒ calculate probability of sequence along single 
path for each model 

hidden Markov model ⇒ Forward algorithm to calculate probability of 
sequence along all paths for each model 

•  segmentation 

hidden Markov model ⇒ Viterbi algorithm to find most probable path 
for sequence 



Assessing the Accuracy of a 

Trained Model 
•  two issues 

–  What data should we use? 

–  Which metrics should we use? 

•  Can we measure accuracy on the data set that was used to 

train the model? 

NO!  This will result in accuracy estimates that  

          are biased (too high). 



Assessing the Accuracy of a 

Trained Model 
•  need to have a test set that is disjoint from the training set 

•  more generally, can use cross validation 

3-fold CV 

illustrated 

Figure from http://gepas.bioinfo.cipf.es/ 



Accuracy 
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Accuracy Metrics 
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