Linear Functions

Chapter 1

Section 3

Constant Rate of Change

In the remaining sections, 3, 4, 5 and 6, of this chapter we will consider functions which have the same average rate of change on every interval. Functions which have the same or a constant rate of change have a graph that is a line and hence are called *linear*.

Example – Population Growth

A town of 30,000 people grows by 2,000 people every year. Since the population, P, is growing at the constant rate of 2,000 people per year, P, is a linear function of time, t, in years.

- a) What is the average rate of change of *P* over every time interval?
- b) Make a table that gives the town's population every five years over a 20-year period. Graph the population.
- c) Find a formula for P as a function of t.

t	Р
0	30,000
5	
10	
15	
20	

t	Р
0	30,000
5	40,000
10	50,000
15	60,000
20	70,000

Characteristics of a Linear Function

- A **linear function** has a constant rate of change.
- The graph of any linear function is a straight line.

Example – Financial Models

A small business spends \$20,000 on new computer equipment and, for tax purposes, chooses to depreciate it to \$0 at a constant rate over a five-year period.

- a) Make a table and a graph showing the value of the equipment over the five-year period.
- b) Give a formula for value as a function of time.

t	V
0	20,000
1	
2	
3	
4	
5	0

t	V
0	20,000
1	16,000
2	12,000
3	8,000
4	4,000
5	0

Equation for Population Growth

In the population growth example, the equation for the function was Current population = Initial population + Growth rate per year \times Number of years or P = 30,000 + 2,000t.

Current population =
$$\underbrace{\frac{\text{Initial}}{\text{population}} + \underbrace{\frac{\text{Growth}}{\text{rate}} \times \frac{\text{Number}}{\text{of years}}}_{30,000}$$

Equation for Business Equipment

In the business equipment example, the equation for the function was Current value = Initial value – Rate of change per year × Number of years or V = 20,000 - 4,000t.

Total = Initial + Change × Number
cost = value + per year × of years
$$\frac{20,000}{20,000}$$
 + $\frac{20,000}{20,000}$ + $\frac{20,000}{1000}$ + $\frac{1}{20,000}$

General Formula for a Linear Function

Using the symbols *x*, *y*, *b*, *m*, we see formula for both of the previous examples follows the same pattern:

Output = Initial value + Rate of change × Input
$$_{b}$$

$$y = b + mx$$

Slope-Intercept Equation for a Linear Function

If y = f(x) is a linear function, then for some constants b and m: y = b + mx.

- m is the slope and gives the rate of change of y with respect to x. The slope tells you how much y changes for a one-unit change in x.
- b is the vertical intercept, or y-intercept, and gives the value of y when x = 0. In mathematical models, b typically represents an initial, or starting value of the output.

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Summary of Linear Notation

- In the population growth example the population function, P = 30,000 + 2,000t, has slope m = 2,000 and vertical intercept b = 30,000.
- In the business equipment example the depreciation function, V = 20,000 4,000t, has slope m = -4,000 and vertical intercept b = 20,000.

Tables for Linear Functions

The table shown below gives values of two function, *p* and *q*. Could either of these function be linear?

X	50	55	60	65	70
p(x)	0.10	0.11	0.12	0.13	0.14
q(x)	0.01	0.03	0.06	0.14	0.15

Yugo Example

Year	1985	1986	1987	1988
Price, p	3990	4110	4200	4330
# sold, Q	49000	43000	38500	32000

- 1) Using the table above explain why Q could be a linear function of p.
- 2) What does the rate of change of this function tell you about Yugos?

Year	1985	1986	1987	1988
Price, p	3990	4110	4200	4330
# sold, Q	49000	43000	38500	32000

Looks Can Be Deceiving

Population of Mexico is given in the table and graph given below. The data appears to be linear.

t (years)	P (millions)
0	100
1	102
2	104.04
3	106.12
4	108.24
5	110.41

Population of Mexico over 60 Years

The formula used to calculate the population of Mexico is $P = 100 (1.02)^x$.

t (years)	P (millions)
0	100
10	121.90
20	148.59
30	181.14
40	220.80
50	269.16
60	328.10

Problem #14

• In 2006, the population of a town was 18,310 and growing by 58 people per year. Find a formula for P, the town's population, in terms of t, the number of years since 2006.

Problem #17

The table below shows the cost *C*, in dollars, of selling *x* cups of coffee per day from a cart.

- a) Show this is a linear relationship.
- b) Plot the data in the table.
- c) Find the slope of the line. Explain what this means in the context of the given situation.
- d) Why might it cost \$50 to serve zero cups of coffee?

X	0	5	10	50	100	200
С	50	51.25	52.50	62.50	75.00	100.00