Input and Output

Chapter 2

Section 1

Finding Output Values – House Painting Example

In the house painting example from section 1.1, the notation n = f(A) indicates that n is a function of A. The expression f(A) represents the output of the function — specifically, the amount of paint required to cover an area of A ft².

• Use the fact that 1 gallon of paint covers 250 ft², to evaluate the expression f(20,000).

Evaluating a Function Using a Formula

The formula for the area of a circle of radius r is $A = q(r) = \pi r^2$. Use the formula to evaluate q(10) and q(20). What do your results tell you about circles? (Interpret your results)

More Function Evaluations

For each of the functions listed below, evaluate and simplify the given expressions:

$$g(x) = \frac{x^2 + 1}{5 + x}$$

- a) g(3)
- *b*) g(-1)
- c) g(a)

$$h(x) = x^2 - 3x + 5$$

- a) h(2)
- *b*) h(a-2)
- c) h(a) 2
- *d*) h(a) h(2)

Finding Input Values: Solving Equations

Use the cricket function $T = \frac{1}{4}R + 40$, introduced in section 1.1, to find the rate, R, at which the snowy tree cricket chirps when the temperature, T, is 76° F.

More Solving Equations

$$f(x) = \frac{1}{\sqrt{x-4}}$$

- a) Find an x-value that results in f(x) = 2.
- b) Is there an x-value that results in f(x) = -2?

More Solving Equations

Let $A = q(r) = \pi r^2$ be the area of a circle of radius r, where r is in cm. What is the radius of a circle whose area is 100 cm²?

Finding Output and Input from Tables

The table below shows the revenue, R = f(t), received or expected by the National Football League, NFL, from network TV as a function of the year, t, since 1975.

- a) Evaluate and interpret f(25).
- b) Solve and interpret f(t) = 1159.

Year, t(since 1975	0	5	10	15	20	25	30
Revenue, R(million \$)	201	364	651	1075	1159	2200	2200

Finding Output and Input from Graphs

A man drives from his home to a store and back. The entire trip takes 30 minutes. The graph on the next slide gives his velocity v(t) (in mph) as a function of the time t (in minutes) since he left home. A negative velocity indicates that he is traveling away from the store back to his home.

Finding Output and Input from Graphs

Figure 2.1: Velocity of a man on a trip to the store and back

Evaluate and interpret:

a)
$$v(5)$$

b)
$$v(24)$$

a)
$$v(5)$$
 b) $v(24)$ c) $v(8) - v(16)$ d) $v(-3)$

Finding Output and Input from Graphs

Figure 2.1: Velocity of a man on a trip to the store and back

Solve for *t* and interpret:

e)
$$v(t) = 15$$
 f) $v(t) = -20$ g) $v(t) = v(7)$