The Number e

Chapter 4

Section 5

Continuous Growth

If \$1.00 is invested in a bank account that pays 100% interest once a year, then, assuming no other deposits or withdrawals, after one year how much money would be in your account?

If \$1.00 is invested in a bank account that pays 50% interest twice a year, then, assuming no other deposits or withdrawals, after one year how much money would be in your account?

Why is the second balance larger?

The Number e

There are two irrational numbers (a number that has an infinite non-repeating decimal expansion) that are so important in mathematics that they have their own name, π and e. e was introduced by Euler in 1727 and has value $e \approx 2.71828...$ Base e is called the *natural base* because it makes many of the formulas of calculus much easier.

Graphs of Different Exponentials

Graph 10^x , 3^x , 2^x , and e^x , in a window $-3.5 \le x \le 3.5$ and $0 \le y \le 50$

Continuous Growth

If exponential growth is continuous then the formula becomes $Q = ae^{kt}$. If a is positive.

- 1) If k > 0, then Q is increasing.
- 2) If k < 0, then Q is decreasing.

Notice that $b = e^k$. So b the growth factor takes on a different form if the growth rate is continuous.

Examples of Continuous Growth Rates

Give the continuous growth rate of each of the following functions and graph each function.

1)
$$P = 5e^{0.2t}$$

2)
$$Q = 5e^{0.3t}$$

2)
$$Q = 5e^{0.3t}$$

3) $R = 5e^{-0.2t}$

Population Example

A population increases from 7.3 million at a continuous rate of 2.2% per year.

- 1) Write a formula for the population.
- 2) Estimate graphically when the population reaches 10 million.

Caffeine Example

Caffeine leaves the body at a continuous rate of 17% per hour. How much caffeine is left 8 hours after drinking a cup of coffee containing 100 mg of caffeine?

Difference Between Annual and Continuous Growth Rates

If $P = a(1.07)^t$, with t in years, we say that P is growing at an *annual* rate of 7% per year. If P = $ae^{0.07t}$, with t in years, we say that P is growing at a continuous rate of 7% per year. Since $e^{0.07}$ = 1.0725..., we can rewrite $ae^{0.07t} \approx a(1.0725)^t$. In other words a 7% continuous growth rate corresponds to a 7.25% annual growth rate. The annual growth rate is always bigger than the corresponding continuous rate.

Connection: *e* and Compound Interest

Frequency	Balance
1 (annually)	\$2.00
2 (semi-annually)	\$2.25
4 (quarterly)	
12 (monthly)	
365 (daily)	
8760 (hourly)	
525,600 (each minute)	
31,536,000 (secondly)	

Connection: *e* and Compound Interest

Frequency	Balance
1 (annually)	\$2.00
2 (semi-annually)	\$2.25
4 (quarterly)	2.441406
12 (monthly)	2.613035
365 (daily)	2.714567
8760 (hourly)	2.718127
525,600 (each minute)	2.718279
31,536,000 (secondly)	2.718282

Wells Fargo Example

In November 2005, the Wells Fargo Bank offered interest at a 2.323% continuous yearly rate. Find the equivalent annual rate.

Annual vs Continuous Rates

Which is better: An account that pays 8% annual interest or an account that pays 7.5% annual interest rate compounded continuously.

The Number e

The number e = 2.71828182... is often used for the base, b, of the exponential function. Base e is called the *natural* base.

