Logarithms and Their Properties

Chapter 5 Section 1

Estimating Solutions to Exponential Equations: Table or Graphs

Consider the equation $N = 100 \cdot 2^t$, where *N* is the number of bacteria and *t* is the time, measured in 20-minute periods.

Suppose instead of using *t* as an input, we use *N* as the input. At what time *t* will the number of bacteria, *N*, equal 1000?

- Use the table function to estimate the proper value of *t*.
- Use the graph to estimate the value of *t*.

Logarithm Base 10

For any positive number *x* the logarithm base 10 of *x* is the power to which we raise 10 in order to produce *x*. $\log_{10} x = c$ means $10^c = x$.

Logarithms base 10 are called common logarithms and $\log_{10} x$ is also written as log *x*.

Logs to Exponents

Rewrite the following statements using exponents instead of logs.

a) log100 = 2
b) log 0.01 = -2
c) log 30 = 1.477121255

Exponents to Logs

Rewrite the following statements using logs instead of exponents.

a)
$$10^5 = 100,000$$

b) $10^{-4} = 0.0001$
c) $10^{0.8} = 6.309573445$

Logarithms Are Exponents

Logarithms are just exponents! Thinking in terms of exponents is often a good way to answer a logarithm problem. Without a calculator evaluate the following, if possible.

a) log1
b) log10
c) log1,000,000

e)
$$\log \frac{1}{\sqrt{10}}$$

f) $\log(-100)$

Logarithmic and Exponential Functions are Inverses

The operation of taking a logarithm "undoes" the exponential function; the logarithm and the exponential are inverse functions.

• For any *N*, $\log(10^N) = N$ and for N > 0, $10^{\log N} = N$.

Inverse Examples

Evaluate without a calculator:

a) $\log(10^{8.5})$ b) $10^{\log 2.7}$ c) $10^{\log(x+3)}$

Summary

Properties of common logarithms:

- By definition, $y = \log x$ means $10^y = x$.
- In particular log 1 = 0 and log 10 = 1.
- The functions 10^x and log x are inverses, so they "undo" each other:

$$\log(10^{x}) = x \quad \text{for all } x$$
$$10^{\log x} = x \quad \text{for all } x > 0$$

Rules for Exponents

If *a* is any positive real number and *n* and *m* are any real numbers, then

1.
$$a^{n} \cdot a^{m} = a^{(n+m)}$$

2. $\frac{a^{n}}{a^{m}} = a^{(n-m)}, a \neq 0$
3. $(a^{m})^{n} = a^{(m \cdot n)}$

Properties for Logarithms

If *a* and *b* are any positive real numbers and *t* is any real number, then

1.
$$\log(a \cdot b) = \log a + \log b$$

2. $\log\left(\frac{a}{b}\right) = \log a - \log b$
3. $\log(a^t) = t \cdot \log a$

Using Logarithms to Solve an Equation

Solve $100 \cdot 2^t = 337,000,000$ for *t*.

The Natural Logarithm

When *e* is used as the base for exponential functions, computations are easier with the use of another logarithm function called log base *e*

For any positive number x the logarithm base e of x is the power to which we raise e in order to produce x. In x = c means $e^c = x$.

Logarithms base *e* are called natural logarithms and written as ln *x*.

Some Properties of the Natural Logarithm

Properties of natural logarithms:

- By definition, $y = \ln x$ means $e^y = x$.
- In particular $\ln 1 = 0$ and $\ln e = 1$.
- The functions e^x and ln x are inverses, so they "undo" each other:

$$\ln(e^{x}) = x \quad \text{for all } x$$
$$e^{\ln x} = x \quad \text{for all } x > 0$$

Properties for Natural Logarithms

If *a* and *b* are any positive real numbers and *t* is any real number, then

1.
$$\ln(a \cdot b) = \ln a + \ln b$$

2. $\ln\left(\frac{a}{b}\right) = \ln a - \ln b$
3. $\ln(a^{t}) = t \cdot \ln a$

Solving Using Natural Logarithms

Solve for *x*:

a)
$$5e^{2x} = 50$$

b) $3^x = 100$

Misconceptions Involving Logs

 $\log(a+b)$ is not the same as $\log a + \log b$ $\log(a-b)$ is not the same as $\log a - \log b$ $\log(ab)$ is not the same as $(\log a)(\log b)$ $\log\left(\frac{a}{b}\right)$ is not the same as $\frac{\log a}{\log b}$ $\log\left(\frac{1}{a}\right)$ is not the same as $\frac{1}{\log a}$

Calculator Errors Involving Logs

Consider the two expressions listed below:

 $\log 5x^2$ $\log \frac{17}{3}$

Evaluate Without a Calculator

c) $\log(10)$ a) $\log 1$ b) $\log 0.1$ f) $\log\left(\frac{1}{\sqrt{10}}\right)$ e) $\log(10^5)$ d) $\log \sqrt{10}$ i) $10^{\log(0.01)}$ g) $10^{\log 100}$ h) $10^{\log 1}$ b) $\ln e^0$ c) $\ln e^5$ a) ln 1 f) $e^{\ln\left(\frac{1}{\sqrt{e}}\right)}$ d) $\ln \sqrt{e}$ e) $e^{\ln 2}$

Solve the Equations Exactly

35. 91 = $46(1.1)^x$

39.
$$e^{x+4} = 10$$

$$43.\ 400e^{0.1x} = 500e^{0.08x}$$

Problem #34

Find a possible formula for the exponential function S(x) in the figure to the right if R(x) = $5.1403 \cdot (1.1169)^{x}$

