Logarithms and Exponential Models

Chapter 5

Section 2

Solving Exponential Equations Using Logarithms

In the carbon-14 problem from Section 3.3, we were given the equation $Q = 200*0.886^t$, where Q, the amount of carbon-14 remaining is a function of the time, t, in thousands of years. Use logarithms to solve the equation 25 = $200*0.886^t$, for t.

US Population Example

The US population, P, in millions, is currently growing according to the formula $P = 299e^{0.009t}$, where t is in years since 2006. When is the population predicted to reach 350 million?

Another Population Example

The population of City A begins with 50,000 people and grows at 3.5% per year. The population of City B begins with a larger population of 250,000 people but grows at the slower rate of 1.6% per year. Assuming these growth rates hold constant, will the population of City A ever catch up to the population of City B? If so, when?

Doubling Time

Eventually any exponentially growing quantity doubles, or increases by 100%. Since its percent growth rate is constant, the time it takes for the quantity to grow by 100% is also constant. This time period is called the *doubling time*.

Doubling Time Example - Turtles

In an earlier example we used the equation $P = 175*1.145^t$ to describe the turtle population as a function of time t.

- a) Find the time needed for the turtle population to double.
- b) How long does it take for this population to quadruple its initial size?
- c) How long to increase its size by a factor of 8?

Another Doubling Time Question

A population doubles in size every 20 years. What is its continuous growth rate?

Half-Life

Just as an exponentially growing quantity doubles in a fixed amount of time, an exponentially decaying quantity decreases by a factor of 2 in a fixed amount of time, called the *half-life* of the quantity.

Computing the Half-Life of Carbon-14

Carbon-14 decays radioactively at a constant annual rate of 0.0121%. Show that the half-life of carbon-14 is about 5728 years.

Computing Decay Rate from Half-Life

The quantity, Q, of a substance decays according to the formula $Q = Q_0 e^{-kt}$, where t is in minutes. The half-life of the substance is 11 minutes. What is the value of k?

Converting Between Exponential Forms $Q = ab^t$ and $Q = ae^{kt}$

Any exponential function can be written in either of the two forms $Q = ab^t$ or $Q = ae^{kt}$. If $b = e^k$, so $k = \ln b$, the two formulas represent the same function.

Conversion Examples

- 1) Convert the exponential function $P = 175*1.145^t$ to the form $P = ae^{kt}$.
- 2) Convert the formula $Q = 7e^{0.3t}$ to the form $Q = ab^t$.
- 3) Assuming t is in years, find the continuous and annual percent growth rates in the above two examples

Annual to Continuous Conversion

Find the continuous percent growth rate of Q = 200*0.886 t , where t is in thousands of years.

Exponential Growth Problems That Cannot Be Solved By Logarithms

With t in years, the population of a country (in millions) is given by $P = 2(1.02)^t$, while the food supply (in millions of people that can be fed) is given by N = 4 + 0.5t. Determine the year in which the country first experiences food

shortages.

Exercises #13 and #14

Give the starting value a, the growth rate r, and the continuous growth rate k.

$$#13 Q = 230(1.182)^t$$

$$#15 Q = 0.81(2)^t$$

Problem #37

Total power generated by wind worldwide doubles every 3 years. In 2008, world windenergy generating capacity was about 90 thousand megawatts. Find the continuous growth rate and give a formula for wind generating capacity W (in thousand megawatts) as a function of t, number of years since 2008