Vertical Stretches and Compressions

Chapter 6

Section 3

Vertical Stretch: A Stereo Amplifier

A stereo amplifier takes a weak signal from a cassette-tape deck, CD payer, or radio tuner and transforms it into a stronger signal to power a set of speakers.

$$V(t) = 3 \cdot f(t)$$

Negative Stretch Factor

What happens if we multiply a function by a negative stretch factor?

Summary for Vertical Stretch or Compression

If f is a function and k is a constant, then the graph of $y = k \cdot f(x)$ is the graph of y = f(x)

- Vertically stretched by a factor of k, if k > 1.
- Vertically compressed by a factor of k, if 0 < k < 1.
- Vertically stretched or compressed by a factor of |
 k| and reflected across x-axis, if k < 0.

A yam is placed in a 300°F oven

t (min)	<i>r</i> (<i>t</i>) (°F)
0	0
10	150
20	225
30	263
40	281
50	291
60	295

Describe the function *r* in words.

Make a table of values for $q(t) = 1.5 \cdot r(t)$

t (min)	r(t) (°F)	q(t) (°F)
0	0	
10	150	
20	225	
30	263	
40	281	
50	291	
60	295	

Stretch Factors and Average Rates of Change

A positive stretch factor does not change where a function is increasing or decreasing. However the average rate of change does change. See below

The Yam Example Revisited

t (min)	r(t) (°F)	q(t) (°F)	
0	0	0	
10	150	225	
20	225	337.5	
30	263	394.5	

Calculate the average rate of change of *r* and *q* over the time periods given in the table to the right.

time (min)	0-10	10-20	20-30
rate for r (°F/min)			
rate for q (°F/min)			

Verifying the Average Rate of Change

Let $g(x) = k \cdot f(x)$. Consider the average rate of change for g from a to b.

Average rate of change of
$$y = g(x)$$
 = $\frac{\Delta y}{\Delta x} = \frac{g(b) - g(a)}{b - a}$
 $g(b) = k \cdot f(b)$; $g(a) = k \cdot f(a)$
Average rate of change of $y = g(x)$ = $\frac{k \cdot f(b) - k \cdot f(a)}{b - a}$
 $k \cdot \frac{f(b) - f(a)}{b - a} = k \cdot \frac{Average rate of}{change of } y = f(x)$

Summary Average Rate of Change

If $g(x) = k \cdot f(x)$, then on any interval, the average rate of change of $g = k \cdot (average \ rate \ of \ change \ of \ f)$.

Combining Transformations

The function $y = f(x) = x^2$ is graphed below. Graph $g(x) = -\frac{1}{2} f(x + 3) - 1$

Solution to Previous Example

Exercise #5 and #7

Let P(n) be a function whose domain is $-3 < n \le 8$ and whose range is $-6 \le P(n) < 12$. Find a possible formula for the function in terms of P(n).

```
#5 The domain of R(n) is -3 < n \le 8 and the range is -60 < R(n) \le 30
```

#7 The domain of T(n) is $-10 < n \le 1$ and the range is $-1.5 \le T(n) < 3$

Exercise #13

Using the table listed below create a table of values for

a)
$$f(-x)$$

b)
$$-f(x)$$

c)
$$3f(x)$$

X	-4	-3	-2	-1	0	1	2	3	4
f(x)	13	6	1	-2	-3	-2	1	6	13