The Sine and Cosine Functions

Chapter 7

Section 2

Using Angles to Measure Position on a Circle

Measure angles with respect to the horizontal, not the vertical so that 0° describes the 3 o'clock position.

Positive angles are measured in the counterclockwise direction, negative angles in the clockwise direction.

Large angles (greater than 360° or less than -360°) wrap around a circle more than once.

Example 1

Sketch angles showing the following positions on the Ferris wheel: a) 90° b) -90° c) 720°

Height on the Ferris Wheel as a Function of Angle

θ (degrees)	-90°	0°	90°	180°	270°	360°	450°	540°
y (feet)	0	225	450	225	0	225	450	225
heta (degrees)	630°	720°	810°	900°	990°	1080°	1170°	1280°
y (feet)	0	225	450	225	0	225	450	225

Example Points on the Unit Circle

Use the unit circle shown to the right to find the point on the circle corresponding to the angles 90°, 180°, and 210°.

Definition of Sine and Cosine

Suppose P = (x, y) is the point on the unit circle specified by the angle θ . We define the functions, **cosine** of θ , or cos θ , and the **sine** of θ , or sin θ , by the formulas cos $\theta = x$ and sin $\theta = y$.

In other words $\cos \theta$ is the *x*-coordinate of the point on the unit circle specified by the angle θ and $\sin \theta$ is the *y*-coordinate.

Definition of Sine and Cosine

Computations – Example 2

Find the values of sin t and cos t

- 0°
- 90°
- 180°
- 270°

Computations – Example 3

In the figure to the right, find the coordinates of the point Q on the unit circle.

Find the lengths of the line segments labeled *m* and *n*.

The Sine and Cosine Functions in Right Triangles

If θ is an angle in a right triangle (other than the right angle),

$$\sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}}, \qquad \cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}}$$

Figure 7.20: A right triangle shown with the unit circle

Figure 7.21: A triangle similar to the triangle in Figure 7.20

Example 4

Referring to the figure to the right, find $\sin \theta$ and $\cos \theta$.

Figure 7.22: Find $\sin \theta$ and $\cos \theta$

Problem #13

Find an angle ϕ , with $0^{\circ} < \phi < 360^{\circ}$, that has the same

- a) Cosine as 53°
- b) Sine as 53°

Problem #15

For the angle ϕ shown in the figure to the right sketch each of the following angles

- a) $180 + \phi$
- b) 180 ϕ
- c) 90 ϕ
- d) 360ϕ

Problem #23

A ladder 3 meters long leans against a house, making an angle α with the ground. How far is the base of the ladder from the base of the wall, in terms of α ? Include a sketch.