Graphs of the Sine and Cosine

Chapter 7

Section 3

Exact Values of the Sine and Cosine

Previously we calculated that the following values:

$$\cos 90^{\circ} = 0$$
, $\sin 90^{\circ} = 1$, $\cos 180^{\circ} = -1$, $\sin 180^{\circ} = 0$

Evaluate $\sin \theta$ and $\cos \theta$ for $\theta = 0^{\circ}$, 270°, and 360°.

Exact Values for Angles, 30°, 45°, 60°

Graphs of the Sine and Cosine Functions

Table 7.4 Values of $\sin \theta$ and $\cos \theta$ for $0 \le \theta < 360^{\circ}$

θ	$\cos \theta$	$\sin \theta$	θ	$\cos \theta$	$\sin \theta$	θ	$\cos \theta$	$\sin \theta$	θ	$\cos \theta$	$\sin heta$
0	1	0	90	0	1	180	-1	0	270	0	-1
30	0.87	0.5	120	-0.5	0.87	210	-0.87	-0.5	300	0.5	-0.87
45	0.71	0.71	135	-0.71	0.71	225	-0.71	-0.71	315	0.71	-0.71
60	0.5	0.87	150	-0.87	0.5	240	-0.5	-0.87	330	0.87	-0.5

Identify Properties of Sine and Cosine

Range, Period

Amplitude

Compare the graph of $y = \sin t$ to the graphs of $y = 2\sin t$ and $y = -0.5\sin t$ for $0 \le t \le 2\pi$. How are the graphs similar? Different? Amplitudes?

Midline

Consider the graph $y = \cos t + 2$.

Figure 6.43: The graph of $y = \cos t + 2$ and its midline y = 2

Notice
the
midline
is also
shifted
2 units
up.

London Eye Graph

Graph the ferris wheel function giving your height, $h = f(\theta)$, in feet, above the ground as a function of the angle θ .

Figure 6.44: On the ferris wheel: Height, h, above ground as a function of the angle, θ

Coordinates of a Point on a Circle of Radius r

$$\frac{x}{\cos \theta} = \frac{r}{1}$$
 and $\frac{y}{\sin \theta} = \frac{r}{1}$

The coordinates (x, y) of the point Q are given by $x = r \cos \theta$ and $y = r \sin \theta$.

Calculations on a Circle of Radius 5

Find the coordinates of the points A, B, and C in the figure pictured to the right accurate to three decimal places.

Another Example Using Radius 5

In the figure to the right, write the height of the point P above the x-axis as a function of the angle θ . Also graph this function.

Height on the Ferris Wheel as a Function of Angle

Figure 6.22: The 1 o'clock position forms a 60° angle with the positive x-axis, and the 10 o'clock position forms a 150° angle

Find your height above the ground for both of the angles θ pictured above.

Heights on the London Eye

The London Eye has a radius of 225 feet. Find your height above the ground as a function of the angle θ measured from the 3 o'clock position.

Graph for the London Eye

Graph the Ferris wheel function, found previously, giving your height, h = $f(\theta)$, in feet, above ground as a function of the angle θ . What are the period, midline, and amplitude?

Exercise #3

Find the midline and amplitude of the periodic function pictured to the right.

Exercises #11, #13, and #17

Find the coordinates of the point at the given angle on a circle of radius 3.8 centered at the origin.

- 11. -270°
- 13. 1426°
- 17. 225°

Problem #27

Estimate the period, midline, and amplitude of the periodic function pictured to the right.

Problem #34

A Ferris wheel is 20 meters in diameter and makes one revolution every 4 minutes. For how many minutes of any revolution will your seat be above 15 meters?