HW6 - Math 310 - Spring 2011 Mark Goadrich March 31, 2011

- (1) Show that if the incidence matrix of a graph G is a square matrix, then G has a cycle.
- (2) Let G_1, G_2, G_3 be any three graphs that have four vertices and two edges. Show that at least two of these graphs are isomorphic.
- (3) Let G be a bipartite graph with disjoint vertex sets V_1 and V_2 . Show that if G has a Hamiltonian cycle, V_1 and V_2 have the same number of elements.
- (4) Show that if $n \ge 3$, K_n contains a hamiltonian cycle.
- (5) Write an algorithm that find the lengths of the shortest paths between all vertex pairs in a simple, connected, weighted graph having n vertices in time $O(n^3)$.
- (6) Let A be the adjacency matrix of the graph $K_{m,n}$. Find a closed formula for the entries in A^j .
- (7) Define \overline{G} as the complement of a graph G, where the vertices are the same, but an edge exists in \overline{G} only when it does not exist in G. Show that if G is a simple graph, either G or \overline{G} is connected.
- (8) Show the steps of applying the Shortest Path algorithm for Exercises 2 and 5 in the text on page 412.
- (9) Describe in general the result of multiplying an incidence matrix B times B^T (the transpose of B).